This paper presents bench scale experiments related to anaerobic co-digestion of aerobic sewage sludge from a pilot WWTP (waste water treatment plants), raw glycerol from a biodiesel industry and food waste. Assays ...This paper presents bench scale experiments related to anaerobic co-digestion of aerobic sewage sludge from a pilot WWTP (waste water treatment plants), raw glycerol from a biodiesel industry and food waste. Assays were conducted in 100 mL non-stirring penicillin vessels, at 30 ℃ and planned according to three optimization phases: (1) binary mixture of sewage sludge and FW (food waste); (2) binary mixture of sewage sludge and glycerol; and (3) ternary mixture of sewage sludge, FW, and glycerol. In the first and second phases, the highest SMP (specific methane production) was achieved by 10% (v/v) FW and 0.5% (v/v) glycerol mixtures. The optimization of the ternary mixture during the third phase was reached by the combination of 10% (v/v) FW and 0.4% (v/v) glycerol. Despite the low SMP value, the addition of glycerol and FW contributed to doubling the SMP value of the sludge sample control.展开更多
文摘This paper presents bench scale experiments related to anaerobic co-digestion of aerobic sewage sludge from a pilot WWTP (waste water treatment plants), raw glycerol from a biodiesel industry and food waste. Assays were conducted in 100 mL non-stirring penicillin vessels, at 30 ℃ and planned according to three optimization phases: (1) binary mixture of sewage sludge and FW (food waste); (2) binary mixture of sewage sludge and glycerol; and (3) ternary mixture of sewage sludge, FW, and glycerol. In the first and second phases, the highest SMP (specific methane production) was achieved by 10% (v/v) FW and 0.5% (v/v) glycerol mixtures. The optimization of the ternary mixture during the third phase was reached by the combination of 10% (v/v) FW and 0.4% (v/v) glycerol. Despite the low SMP value, the addition of glycerol and FW contributed to doubling the SMP value of the sludge sample control.