Pit-building antlions and wormlions are 2 distantly-related insect species, whose larvae construct pits in loose soil to trap small arthropod prey. This convergent evolution of natural histories has led to additional ...Pit-building antlions and wormlions are 2 distantly-related insect species, whose larvae construct pits in loose soil to trap small arthropod prey. This convergent evolution of natural histories has led to additional similarities in their natural history and ecology, and thus, these 2 species encounter similar abiotic stress (such as periodic starvation) in their natural habitat. Here, we measured the cold tolerance of the 2 species and examined whether recent feeding or food deprivation, as well as body composition (body mass and lipid content) and condition (quantified as mass-to-size residuals) affect their cold tolerance. In contrast to other insects, in which food deprivation either enhanced or impaired cold tolerance, prolonged fasting had no effect on the cold tolerance of either species, which had similar cold tolerance. The 2 species differed, however, in how cold tolerance related to body mass and lipid content: although body mass was positively correlated with the wormlion cold tolerance, lipid content was a more reliable predictor of cold tolerance in the antlions. Cold tolerance also underwent greater change with ontogeny in wormlions than in antlions. We discuss possible reasons for this lack of effect of food deprivation on both species' cold tolerance, such as their high starvation tolerance (being sit-and-wait predators).展开更多
文摘Pit-building antlions and wormlions are 2 distantly-related insect species, whose larvae construct pits in loose soil to trap small arthropod prey. This convergent evolution of natural histories has led to additional similarities in their natural history and ecology, and thus, these 2 species encounter similar abiotic stress (such as periodic starvation) in their natural habitat. Here, we measured the cold tolerance of the 2 species and examined whether recent feeding or food deprivation, as well as body composition (body mass and lipid content) and condition (quantified as mass-to-size residuals) affect their cold tolerance. In contrast to other insects, in which food deprivation either enhanced or impaired cold tolerance, prolonged fasting had no effect on the cold tolerance of either species, which had similar cold tolerance. The 2 species differed, however, in how cold tolerance related to body mass and lipid content: although body mass was positively correlated with the wormlion cold tolerance, lipid content was a more reliable predictor of cold tolerance in the antlions. Cold tolerance also underwent greater change with ontogeny in wormlions than in antlions. We discuss possible reasons for this lack of effect of food deprivation on both species' cold tolerance, such as their high starvation tolerance (being sit-and-wait predators).