The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time,...The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.展开更多
The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-L...The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-LR decomposition was primarily ascribed to production of strong and nonselective oxidant-hydroxyl radicals within the system. The intensity of UV radiation, initial concentration of MC-LR, MC-LR purity, dosages of H2O2, the initial solution pH, and anions present in water, to some extent, influenced the degradation rate of MC-LR. A modified pseudo-first-order kinetic model was developed to predict the removal efficiency under different experimental conditions.展开更多
基金Project(2008ZX07421-002) supported by the Key National Science and Technology Project of ChinaProject(50638020) supported by the National Natural Science Foundation of China
文摘The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.
基金supported by the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAJ08B06)the National Major Project of Science & Technology Ministry of China (No. 2008ZX07421-002)the Shanghai Science & Technology Commission Key Scientific & Technological Project (No. 072312001), China
文摘The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-LR decomposition was primarily ascribed to production of strong and nonselective oxidant-hydroxyl radicals within the system. The intensity of UV radiation, initial concentration of MC-LR, MC-LR purity, dosages of H2O2, the initial solution pH, and anions present in water, to some extent, influenced the degradation rate of MC-LR. A modified pseudo-first-order kinetic model was developed to predict the removal efficiency under different experimental conditions.