The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten fo...The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...展开更多
[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Dispos...[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Disposable excessive soak- ing and regression relation of nutrition infusion of substrate plots were studied by design of 13 time gradient. Plant nutrition absorption and growth effects after sub- strate plots immersed by water were investigated by growing tomato. [Result] Con- centration and time of the three nutrition immersed in water had the regression equation of each, as follows: N=-2E-05t2+0.016 lt+2.0553, P=0.002 2t+2.248 5 and K=0.004 7t+0.875 8. With nutrition loss of the three, however, loss amount was al- most same with variance analysis of regression equation, which may result from its volatilization. Regression equations of P and K were: P=0.125 7t-0.117, and K=0.022 5t.1514, which led to adverse impact on plant absorption of N and K above ground, whose equations were N=20.64e-4E-0.4t, and K=E-06t2-0.011 3t+29.055. Meanwhile, un- der the condition, sound seedling index was not impacted a lot by excessive immer- sion. [Conclusion] This study has provided theoretical reference for guidance of sub- strate plot soaking method, cultivation and regulation, and breeding, as well as agri- cultural production.展开更多
Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultane...Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultaneously for the purpose of investigating the mechanism of condensation occurred on the fabrics. The experiment conducted at the standard condition of temperature of 20℃ and relative humidity of 65%. The result obtained from experiment showed that condensation could occur under the situation closed to saturation line as the temperature on fabric may be lower than dew point of water vapor in the measuring box depending on the experiment conducted at an ambient environment temperature of 20℃ The range of fabrics studied showed that PTFE laminated fabrics except nylon gingham PTFE laminated fabric facilitates the loss of water vapor and therefore prevent condensation. It is necessary to develop studies from a wide range of fabrics, especially breathable fabrics and under bad experiment condition in order to develop fabrics, which could eliminate condensation, or transport water vapor through the fabric while remaining waterproof.展开更多
The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium....The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb^2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCI quantitatively. The adsorption rate constants determined under various temperatures are k288 n=2.22×10-5 s^-1, k298 K=2.51 × 10^-5 s^-1, and k308 K= 2.95 × 10^-5 s^-1, respectively. The apparent activation energy, Ea is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔH^Θ=13.3 kJ/mol, ΔS^Θ=119 J/(mol·K), and ΔG^Θ298 K =-22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb^2+ follows Langmuir model.展开更多
The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was establ...The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.展开更多
The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management,which in turn increases the energy consumption further.Hence,the sustainable development of ...The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management,which in turn increases the energy consumption further.Hence,the sustainable development of our society needs advanced thermal management with low,even zero,energy consumption.Harvesting water from the atmosphere,followed by moisture desorption to dissipate heat,is an efficient and feasible approach for zero-energy-consumption thermal management.However,current methods are limited by the low absorbance of water,low water vapor transmission rate(WVTR)and low stability,thus resulting in low thermal management capability.In this study,we report an innovative electrospinning method to process hierarchically porous metal–organic framework(MOF)composite fabrics with high-efficiency and zero-energy-consumption thermal management.The composite fabrics are highly loaded with MOF(75 wt%)and their WVTR value can be up to 3138 g m^(-2) d^(-1).The composite fabrics also exhibit stable microstructure and performance.Under a conventional environment(30℃,60%relative humidity),the composite fabrics adsorb water vapor for regeneration within 1.5 h to a saturated value Wsat of 0.614 g g^(-1),and a corresponding equivalent enthalpy of 1705.6 J g^(-1).In the thermal management tests,the composite fabrics show a strong cooling capability and significantly improve the performance of thermoelectric devices,portable storage devices and wireless chargers.These results suggest that hierarchically porous MOF composite fabrics are highly promising for thermal management of intermittent-operation electronic devices.展开更多
基金Supported by Key Project of Science and Technology Research of Ministry of Education(308021)Chang Jiang Scholars Innovation Team of Ministry of Education(IRT0811)Geological Survey Project of China Geological Survey(1212010331302)~~
文摘The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...
基金Supported by Action Programs of Service Business of Scientists and Engineers in MOST(2009GJA00026)Science and Technology Project of Beijing Municipal Bureau of Agriculture(2010020101)+1 种基金Science and Technology project of Beijing Municipal Bureau of Agriculture(011050465100002)Science and Technology Project of Beijing Academy of Agricultural and Forestry Sciences(2010A016)~~
文摘[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Disposable excessive soak- ing and regression relation of nutrition infusion of substrate plots were studied by design of 13 time gradient. Plant nutrition absorption and growth effects after sub- strate plots immersed by water were investigated by growing tomato. [Result] Con- centration and time of the three nutrition immersed in water had the regression equation of each, as follows: N=-2E-05t2+0.016 lt+2.0553, P=0.002 2t+2.248 5 and K=0.004 7t+0.875 8. With nutrition loss of the three, however, loss amount was al- most same with variance analysis of regression equation, which may result from its volatilization. Regression equations of P and K were: P=0.125 7t-0.117, and K=0.022 5t.1514, which led to adverse impact on plant absorption of N and K above ground, whose equations were N=20.64e-4E-0.4t, and K=E-06t2-0.011 3t+29.055. Meanwhile, un- der the condition, sound seedling index was not impacted a lot by excessive immer- sion. [Conclusion] This study has provided theoretical reference for guidance of sub- strate plot soaking method, cultivation and regulation, and breeding, as well as agri- cultural production.
文摘Condensation occurs when the local vapor pressure rises above the saturation vapor pressure at the local temperature in theory. A new measuring apparatus were made to obtain temperature and relative humidity simultaneously for the purpose of investigating the mechanism of condensation occurred on the fabrics. The experiment conducted at the standard condition of temperature of 20℃ and relative humidity of 65%. The result obtained from experiment showed that condensation could occur under the situation closed to saturation line as the temperature on fabric may be lower than dew point of water vapor in the measuring box depending on the experiment conducted at an ambient environment temperature of 20℃ The range of fabrics studied showed that PTFE laminated fabrics except nylon gingham PTFE laminated fabric facilitates the loss of water vapor and therefore prevent condensation. It is necessary to develop studies from a wide range of fabrics, especially breathable fabrics and under bad experiment condition in order to develop fabrics, which could eliminate condensation, or transport water vapor through the fabric while remaining waterproof.
基金Project(2008F70059) supported by the Scientific and Technological Research Planning of Zhejiang Province, China
文摘The adsorption properties of a novel macroporous weak acid resin (D152) for Pb^2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb^2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb^2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCI quantitatively. The adsorption rate constants determined under various temperatures are k288 n=2.22×10-5 s^-1, k298 K=2.51 × 10^-5 s^-1, and k308 K= 2.95 × 10^-5 s^-1, respectively. The apparent activation energy, Ea is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔH^Θ=13.3 kJ/mol, ΔS^Θ=119 J/(mol·K), and ΔG^Θ298 K =-22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb^2+ follows Langmuir model.
基金Project supported by Science&Technology Program of Hubei Traffic and Transport Office,ChinaProject(41272377)supported by the National Natural Science Foundation of China
文摘The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.
基金supported by the National Natural Science Foundation of China(51877132,U19A20105,and 52003153)the Program of Shanghai Academic Research Leader(21XD1401600)。
文摘The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management,which in turn increases the energy consumption further.Hence,the sustainable development of our society needs advanced thermal management with low,even zero,energy consumption.Harvesting water from the atmosphere,followed by moisture desorption to dissipate heat,is an efficient and feasible approach for zero-energy-consumption thermal management.However,current methods are limited by the low absorbance of water,low water vapor transmission rate(WVTR)and low stability,thus resulting in low thermal management capability.In this study,we report an innovative electrospinning method to process hierarchically porous metal–organic framework(MOF)composite fabrics with high-efficiency and zero-energy-consumption thermal management.The composite fabrics are highly loaded with MOF(75 wt%)and their WVTR value can be up to 3138 g m^(-2) d^(-1).The composite fabrics also exhibit stable microstructure and performance.Under a conventional environment(30℃,60%relative humidity),the composite fabrics adsorb water vapor for regeneration within 1.5 h to a saturated value Wsat of 0.614 g g^(-1),and a corresponding equivalent enthalpy of 1705.6 J g^(-1).In the thermal management tests,the composite fabrics show a strong cooling capability and significantly improve the performance of thermoelectric devices,portable storage devices and wireless chargers.These results suggest that hierarchically porous MOF composite fabrics are highly promising for thermal management of intermittent-operation electronic devices.