Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary...Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary conditions of the porous media,which leads to different behaviors of the peak frequency of attenuation.The associated transition frequency can provide detailed information about the trend of LFF;therefore,research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation(i.e.,inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media.In this study,we firstly obtain the transition frequency of fluid flux based on Biot's theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell(RUC).We then analyze changes of these two frequencies in porous media with different porous properties.Finally,we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs.This setup can facilitate the understanding of the effect from the undrained boundary condition.Results demonstrate that these two frequencies have the same trend at low water saturation,but amplitude variations differ between the frequencies as the amount of saturation increases.However,for cases of high water saturation,both the trend and the amplitude variation of these two frequencies fit well with each other.展开更多
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine...To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.展开更多
Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) ...Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) and pore gas (air or CO2) as well as different magnitudes of back pressure were used to achieve different Sr (or B-value). The measured relationship between B-value and Vp was not consistent with the theoretical prediction. The measurement shows that the Vp value in the specimen flushed with de-aired water is independent of B-value (or St) and is always around the one in fully saturated condition. However, the Vp value in the specimen flushed with tap water increases with B-value, but the shape of the relationship between Vp and B-value is quite different from the theoretical prediction. The possible explanation for the discrepancy between laboratory measurement and theoretical prediction lies in that the air exists in the water as air bubbles and therefore the pore fluid (air-water mixture) is heterogeneous instead of homogenous assumed in the theoretical prediction.展开更多
Input of large amounts of N and S compounds into forest ecosystems through atmospheric deposition is a significant risk for soil acidification in the oil sands region of Alberta.We evaluated the sensitivity of forest ...Input of large amounts of N and S compounds into forest ecosystems through atmospheric deposition is a significant risk for soil acidification in the oil sands region of Alberta.We evaluated the sensitivity of forest soils to acidification in two watersheds(Lake 287 and Lake 185)with contrasting hydrological regimes as a part of a larger project assessing the role of N and S cycling in soil acidification in forest ecosystems.Fifty six forest soil samples were collected from the two watersheds by horizon from 10 monitoring plots dominated by either jack pine(Pinus banksiana)or aspen(Populus tremuloides).Soils in the two watersheds were extremely to moderately acidic with pH(CaCl_2)ranging from 2.83 to 4.91.Soil acid-base chemistry variables such as pH,base saturation,Al saturation,and acid-buffering capacity measured using the acetic acid equilibrium procedure indicated that soils in Lake 287 were more acidified than those in Lake 185. Acid-buffering capacity decreased in the order of forest floor>subsurface mineral soil>surface mineral soil.The most dramatic differences in percent Ca and Al saturations between the two watersheds were found in the surface mineral soil horizon.Percent Ca and Al saturation in the surface mineral soil in Lake 287 were 15% and 70%,respectively;the percent Ca saturation value fell within a critical range proposed in the literature that indicates soil acidification.Our results suggest that the soils in the two watersheds have low acid buffering capacity and would be sensitive to increased acidic deposition in the region.展开更多
For the calculation of non-linear magnetic fields, a simple program can be as effective as a large commercialized software package. If relaxation methods are used, they must include successive over-relaxation and unde...For the calculation of non-linear magnetic fields, a simple program can be as effective as a large commercialized software package. If relaxation methods are used, they must include successive over-relaxation and under-relaxation and much attention must be paid to the relaxation factor and the interpolation. In this paper some skills are proposed on the setting of an interpolation switch and the choosing of saturation point so as to assure satisfied convergence properties. The numerical results by using these methods conform well to the tests.展开更多
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes ...A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-waterdynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensionalmovement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in theplow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil waterabsorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater thanthose with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant rootwater uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columnswith crop planting. Comparison between the simulated and the determined values showed that model simulation resultswere ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.展开更多
A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conv...A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.展开更多
Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color...Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.展开更多
Freeze-drying of the initially porous frozen material with pre-built pores from liquid material was found experimentally to save drying time by over 30% with an initial saturation being 0.28 compared with the conventi...Freeze-drying of the initially porous frozen material with pre-built pores from liquid material was found experimentally to save drying time by over 30% with an initial saturation being 0.28 compared with the conventional operation with the initial saturation being 1, using mannitol as the solid material. In order to understand the mass and heat transfer phenomena of this novel process, a two-dimensional mathematical model of coupled mass and heat transfer was derived with reference to the cylindrical coordinate system. Three adsorption–desorption equilibrium relationships between the vapour pressure and saturation value namely, power-law, Redhead's style and Kelvin's style equation, were tested. Kelvin's style in exponential form of adsorption equilibrium relation gave an excellent agreement between the model prediction and experimental measurement when the equation parameter, γ, of 5000 was applied. Analyses of temperature and ice saturation profiles show that additional heat needs to be supplied to increase the sample temperature in order to promote the desorption process. Simulation also shows that there is a threshold initial porosity after which the drying time decreased with the increase in the initial porosity. Enhanced freeze-drying is expected to be achieved by simultaneously enhancing mass and heat transfer of the process.展开更多
This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, fiat, and upgrade) is taken into account and they are characterized with...This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, fiat, and upgrade) is taken into account and they are characterized with different velocity limit. At the low density, the traffic current increases linearly with density and saturates at some values of immediately density. As the density increases, the traffic jam appears firstly before the upgrade section and then extends to the downgrade section. Additionally, the relationships of the velocity and headway against position in different densities are obta/ned from simulation. These results clearly clarify where and when the traffic jam appears. Finally, the critical densities are derived via the theoretical analysis before and after the discontinuous fronts and the theoretical results are consistent with the critical values of simulation results.展开更多
Soil dissolved phosphorus (P) and colloidal P mobilization could be closely related to the degree of phosphorus saturation (DPS). Effects of a wide range of DPS on the distributions of dissolved P and colloidal P in a...Soil dissolved phosphorus (P) and colloidal P mobilization could be closely related to the degree of phosphorus saturation (DPS). Effects of a wide range of DPS on the distributions of dissolved P and colloidal P in a paddy soil profile were investigated in this study. Dissolved P and colloidal P in water-dispersible soil colloid suspension increased obviously with increasing DPS. The change point of DPS was at 0.12 by using a split-line model. Above the value, dissolved P (3.1 mg P kg-1 ) in soil profile would increase sharply and then transfer downward. Compared with dissolved P, colloidal P was the dominant fraction (78%-91%) of P in soil colloid suspension, and positively related to DPS without a significant change point. The high release of colloids in subsoils with low DPS was attributed to the low ionic strength and high pH value in subsoils. The DPS also had a significant and positive correlation with electrical conductivity (EC), but it showed a negative correlation with pH value. However, the concentration of colloidal P was not greatly correlated to the pH value, EC and optical density of the soil colloid suspension. The results indicated that DPS was an important factor that may affect the accumulation and mobilization of water-extractable colloidal P and dissolved P.展开更多
基金supported by National Natural Science Foundation of China(Grant No.41374116)the Fundamental Research Funds for Central Universities(Grant No.2014B39014)
文摘Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary conditions of the porous media,which leads to different behaviors of the peak frequency of attenuation.The associated transition frequency can provide detailed information about the trend of LFF;therefore,research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation(i.e.,inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media.In this study,we firstly obtain the transition frequency of fluid flux based on Biot's theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell(RUC).We then analyze changes of these two frequencies in porous media with different porous properties.Finally,we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs.This setup can facilitate the understanding of the effect from the undrained boundary condition.Results demonstrate that these two frequencies have the same trend at low water saturation,but amplitude variations differ between the frequencies as the amount of saturation increases.However,for cases of high water saturation,both the trend and the amplitude variation of these two frequencies fit well with each other.
基金National Natural Science Foundation of China(No.519705449)。
文摘To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm.
基金Foundation item: Project(2012CB719803) supported by the National Basic Research Program of China Project(201011159098) supported by the Seed Funding for Basic Research Scheme from The University of Hong Kong, China
文摘Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) and pore gas (air or CO2) as well as different magnitudes of back pressure were used to achieve different Sr (or B-value). The measured relationship between B-value and Vp was not consistent with the theoretical prediction. The measurement shows that the Vp value in the specimen flushed with de-aired water is independent of B-value (or St) and is always around the one in fully saturated condition. However, the Vp value in the specimen flushed with tap water increases with B-value, but the shape of the relationship between Vp and B-value is quite different from the theoretical prediction. The possible explanation for the discrepancy between laboratory measurement and theoretical prediction lies in that the air exists in the water as air bubbles and therefore the pore fluid (air-water mixture) is heterogeneous instead of homogenous assumed in the theoretical prediction.
基金Project supported by the NO_x-SO_2 Management Working Group(NSMWG)under the Cumulative Environmental Management Association(CEMA),Canada(No.2006-0003).
文摘Input of large amounts of N and S compounds into forest ecosystems through atmospheric deposition is a significant risk for soil acidification in the oil sands region of Alberta.We evaluated the sensitivity of forest soils to acidification in two watersheds(Lake 287 and Lake 185)with contrasting hydrological regimes as a part of a larger project assessing the role of N and S cycling in soil acidification in forest ecosystems.Fifty six forest soil samples were collected from the two watersheds by horizon from 10 monitoring plots dominated by either jack pine(Pinus banksiana)or aspen(Populus tremuloides).Soils in the two watersheds were extremely to moderately acidic with pH(CaCl_2)ranging from 2.83 to 4.91.Soil acid-base chemistry variables such as pH,base saturation,Al saturation,and acid-buffering capacity measured using the acetic acid equilibrium procedure indicated that soils in Lake 287 were more acidified than those in Lake 185. Acid-buffering capacity decreased in the order of forest floor>subsurface mineral soil>surface mineral soil.The most dramatic differences in percent Ca and Al saturations between the two watersheds were found in the surface mineral soil horizon.Percent Ca and Al saturation in the surface mineral soil in Lake 287 were 15% and 70%,respectively;the percent Ca saturation value fell within a critical range proposed in the literature that indicates soil acidification.Our results suggest that the soils in the two watersheds have low acid buffering capacity and would be sensitive to increased acidic deposition in the region.
基金Supported by the National Natural Science Fundation of China(No.69881002)
文摘For the calculation of non-linear magnetic fields, a simple program can be as effective as a large commercialized software package. If relaxation methods are used, they must include successive over-relaxation and under-relaxation and much attention must be paid to the relaxation factor and the interpolation. In this paper some skills are proposed on the setting of an interpolation switch and the choosing of saturation point so as to assure satisfied convergence properties. The numerical results by using these methods conform well to the tests.
基金the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803),the National Natural Science Foundation of China (Nos. 40371058 and 40471018), the Jiangsu Provincial Society Deve-lopment Program of China (No. BS2003005), and the Institute of Geography and Limnology, Chinese Academy of Sciences(No. S250020).
文摘A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-waterdynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensionalmovement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in theplow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil waterabsorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater thanthose with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant rootwater uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columnswith crop planting. Comparison between the simulated and the determined values showed that model simulation resultswere ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.
基金Supported by "985" Funds, Shanghai Jiaotong University, China.
文摘A numerical model for proton exchange membrane (PEM) fuel cell is developed, which can simulate such basic transport phenomena as gas-liquid two-phase flow in a working fuel cell. Boundary conditions for both the conventional and the interdigitated modes of flow are presented on a three-dimensional basis. Numerical techniques for this model are discussed in detail. Validation shows good agreement between simulating results and experimental data. Furthermore, internal transport phenomena are discussed and compared for PEM fuel cells with conventional and interdigitated flows. It is found that the dead-ended structure of an interdigitated flow does increase the oxygen mass fraction and decrease the liquid water saturation in the gas diffusion layer as compared to the conventional mode of flow. However, the cathode humidification is important for an interdigitated flow to acquire better performance than a conventional flow fuel cell.
基金Projects(61370200,61672130,61602082) supported by the National Natural Science Foundation of ChinaProject(1721203049-1) supported by the Science and Technology Research and Development Plan Project of Handan,Hebei Province,China
文摘Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.
基金Supported by the Fundamental Research Funds for the Central Universities(DUT14RC(3)008)the National Natural Science Foundation of China(21076042)the Research Grants Council of Hong Kong SAR(HKUST600704)
文摘Freeze-drying of the initially porous frozen material with pre-built pores from liquid material was found experimentally to save drying time by over 30% with an initial saturation being 0.28 compared with the conventional operation with the initial saturation being 1, using mannitol as the solid material. In order to understand the mass and heat transfer phenomena of this novel process, a two-dimensional mathematical model of coupled mass and heat transfer was derived with reference to the cylindrical coordinate system. Three adsorption–desorption equilibrium relationships between the vapour pressure and saturation value namely, power-law, Redhead's style and Kelvin's style equation, were tested. Kelvin's style in exponential form of adsorption equilibrium relation gave an excellent agreement between the model prediction and experimental measurement when the equation parameter, γ, of 5000 was applied. Analyses of temperature and ice saturation profiles show that additional heat needs to be supplied to increase the sample temperature in order to promote the desorption process. Simulation also shows that there is a threshold initial porosity after which the drying time decreased with the increase in the initial porosity. Enhanced freeze-drying is expected to be achieved by simultaneously enhancing mass and heat transfer of the process.
基金Supported by Research Grants from City University of Hong Kong,HKSAR under Grant No.CityU-SRG 7002684Science&Technology Program of Shanghai Maritime University under Grant No.20110046+1 种基金Shanghai Municipal Natural Science Foundation under Grant No.10190502500National Natural Science Foundation of China under Grant Nos.11172164,71101088 and 71171129
文摘This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, fiat, and upgrade) is taken into account and they are characterized with different velocity limit. At the low density, the traffic current increases linearly with density and saturates at some values of immediately density. As the density increases, the traffic jam appears firstly before the upgrade section and then extends to the downgrade section. Additionally, the relationships of the velocity and headway against position in different densities are obta/ned from simulation. These results clearly clarify where and when the traffic jam appears. Finally, the critical densities are derived via the theoretical analysis before and after the discontinuous fronts and the theoretical results are consistent with the critical values of simulation results.
基金Supported by the National Natural Science Foundation of China (Nos. 21077088 and 41271314)the National Basic Research Program (973 Program) of China (No. 2002CB410807)
文摘Soil dissolved phosphorus (P) and colloidal P mobilization could be closely related to the degree of phosphorus saturation (DPS). Effects of a wide range of DPS on the distributions of dissolved P and colloidal P in a paddy soil profile were investigated in this study. Dissolved P and colloidal P in water-dispersible soil colloid suspension increased obviously with increasing DPS. The change point of DPS was at 0.12 by using a split-line model. Above the value, dissolved P (3.1 mg P kg-1 ) in soil profile would increase sharply and then transfer downward. Compared with dissolved P, colloidal P was the dominant fraction (78%-91%) of P in soil colloid suspension, and positively related to DPS without a significant change point. The high release of colloids in subsoils with low DPS was attributed to the low ionic strength and high pH value in subsoils. The DPS also had a significant and positive correlation with electrical conductivity (EC), but it showed a negative correlation with pH value. However, the concentration of colloidal P was not greatly correlated to the pH value, EC and optical density of the soil colloid suspension. The results indicated that DPS was an important factor that may affect the accumulation and mobilization of water-extractable colloidal P and dissolved P.