Because actuator satu ration can become a problem or even a disaster in flight control system, the con sideration of actuator saturation in the design phase may indeed reduce the degr ee of conservativeness of an flig...Because actuator satu ration can become a problem or even a disaster in flight control system, the con sideration of actuator saturation in the design phase may indeed reduce the degr ee of conservativeness of an flight control system (FCS) and thus noticeably enh ance the performance of the FCS. Deflection limits and rate limits are both cons idered in a new adaptive backstepping FCS design process. The key of the method is that a new control Lyapunov function (CLF) and a control law are chosen when the actuator saturation occurs. This idea results from that there must be a vari ation in the pseudo-control at saturation. The whole progress is a modification of an early presented method: adaptive backstepping control scheme. The stabili ty is proved and verified successfully. The conclusion and some comments about t his method are given in the end.展开更多
A modified nonlinear stochastic optimal bounded control strategy for random excited hysteretic systems with actuator saturation is proposed. First, a controlled hysteretic system is converted into an equivalent nonlin...A modified nonlinear stochastic optimal bounded control strategy for random excited hysteretic systems with actuator saturation is proposed. First, a controlled hysteretic system is converted into an equivalent nonlinear nonhysteretic stochastic system. Then, the partially averaged Itoe stochastic differential equation and dynamical programming equation are established, respectively, by using the stochastic averaging method for quasi non-integrable Hamiltonian systems and stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang-bang control is derived. Finally, the response of optimally controlled system is predicted by solving the Fokker-Planck-Kolmogorov (FPK) equation associated with the fully averaged Itoe equation. Numerical results show that the proposed control strategy has high control effectiveness and efficiency.展开更多
By using the so-called SP-stable polynomials, this paper reconsiders the problem of global stabilization of linear systems with input saturation. Firstly, a new nonlinear feedback law consisting of parallel connection...By using the so-called SP-stable polynomials, this paper reconsiders the problem of global stabilization of linear systems with input saturation. Firstly, a new nonlinear feedback law consisting of parallel connections of saturation functions by means of the so-called state-dependent saturation function is proposed for global stabilization of chains of integrators system. The state-dependent saturation function allows increasing the control energy when some of the states are badly scaled and can improve significantly the transient performances of the closed-loop system. Secondly, this type of global stabilization nonlinear feedback laws is extended to a class of linear systems that can be globally stabilized by bounded controls. Numerical examples show the effectiveness of the proposed approach.展开更多
文摘Because actuator satu ration can become a problem or even a disaster in flight control system, the con sideration of actuator saturation in the design phase may indeed reduce the degr ee of conservativeness of an flight control system (FCS) and thus noticeably enh ance the performance of the FCS. Deflection limits and rate limits are both cons idered in a new adaptive backstepping FCS design process. The key of the method is that a new control Lyapunov function (CLF) and a control law are chosen when the actuator saturation occurs. This idea results from that there must be a vari ation in the pseudo-control at saturation. The whole progress is a modification of an early presented method: adaptive backstepping control scheme. The stabili ty is proved and verified successfully. The conclusion and some comments about t his method are given in the end.
基金the National Natural Science Foundation of China (Nos. 10332030 and 10772159)the Research Fund for Doctoral Program of Higher Education of China (No. 20060335125)the Foundation of ECUST (East China University of Science and Tech-nology) for Outstanding Young Teachers (No. YH0157105), China
文摘A modified nonlinear stochastic optimal bounded control strategy for random excited hysteretic systems with actuator saturation is proposed. First, a controlled hysteretic system is converted into an equivalent nonlinear nonhysteretic stochastic system. Then, the partially averaged Itoe stochastic differential equation and dynamical programming equation are established, respectively, by using the stochastic averaging method for quasi non-integrable Hamiltonian systems and stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang-bang control is derived. Finally, the response of optimally controlled system is predicted by solving the Fokker-Planck-Kolmogorov (FPK) equation associated with the fully averaged Itoe equation. Numerical results show that the proposed control strategy has high control effectiveness and efficiency.
基金supported in part by the National Natural Science Foundation of China under Grant Nos. 60904007 and 61074111the China Postdoctoral Science Foundation under Grant No.20100480059+2 种基金the Heilongjiang Postdoctoral Foundation of China under Grant No.LRB10-194the Foundation for Innovative Research Group of the National Natural Science Foundation of China under Grant No.601021002the Development Program for Outstanding Young Teachers at the Harbin Institute of Technology under Grant No. HITQNJS.2009.054
文摘By using the so-called SP-stable polynomials, this paper reconsiders the problem of global stabilization of linear systems with input saturation. Firstly, a new nonlinear feedback law consisting of parallel connections of saturation functions by means of the so-called state-dependent saturation function is proposed for global stabilization of chains of integrators system. The state-dependent saturation function allows increasing the control energy when some of the states are badly scaled and can improve significantly the transient performances of the closed-loop system. Secondly, this type of global stabilization nonlinear feedback laws is extended to a class of linear systems that can be globally stabilized by bounded controls. Numerical examples show the effectiveness of the proposed approach.