Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films bas...Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films based on classical crystallization theory is not fully understood. Here, we develop a supersaturation controlled strategy(SCS) to balance the nucleation and crystal growth speeds. By this strategy, we are able to find an ideal supersaturation region to realize a balance of nucleation and crystal growth, which yields highly crystallized perovskite films with micrometer-scale grains. Besides, we provide a thoughtful analysis of nucleation and growth based on the fabrication of the perovskite films. As a result, the highest photovoltaic power conversion efficiencies(PCE) of 19.70% and 20.31% are obtained for the planar and the meso-superstructured devices, respectively. This strategy sheds some light for understanding the film growth mechanism of high quality perovskite film, and it provides a facile strategy to fabricate high efficiency perovskite solar cells.展开更多
In some control strategies of the direct-rive permanent magnet generator(DDPMG),the mathematics model is excessively simplified and some complex nonlinear characteristics,such as core saturation and cross-saturation,a...In some control strategies of the direct-rive permanent magnet generator(DDPMG),the mathematics model is excessively simplified and some complex nonlinear characteristics,such as core saturation and cross-saturation,are generally neglected.To solve this problem,this paper utilizes the frozen element permeability method to compute the armature self-and mutual-inductance,permanent magnet d-and q-axis flux varying with d-axis and q-axis current,then an improved model is presented in which the core saturation and cross-saturation between d-axis and q-axis are considered effectively.Based on this model,the method for computing the performance of the generators is also proposed.Taking a 1.5-MW DDPMG as an example,the time-stepping finite element method(T-S FEM) is adopted to analyze the performance with no-load and loaded conditions,the results show a good agreement with the ones obtained by the improved model.Compared with the simplified model,it is demonstrated that the presented model has the high efficiency and reliability and can provide a good reference for optimization design of DDPMG and other PM motors.展开更多
基金supported by the National Key Research and Development Program of China (2016YFA0204000)the National Natural Science Foundation of China (U1632118, 21571129)+2 种基金Shanghai Tech Start-Up Funding1000 Young Talent program,Science and Technology Commission of Shanghai Municipality (16JC1402100, 16520720700)
文摘Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films based on classical crystallization theory is not fully understood. Here, we develop a supersaturation controlled strategy(SCS) to balance the nucleation and crystal growth speeds. By this strategy, we are able to find an ideal supersaturation region to realize a balance of nucleation and crystal growth, which yields highly crystallized perovskite films with micrometer-scale grains. Besides, we provide a thoughtful analysis of nucleation and growth based on the fabrication of the perovskite films. As a result, the highest photovoltaic power conversion efficiencies(PCE) of 19.70% and 20.31% are obtained for the planar and the meso-superstructured devices, respectively. This strategy sheds some light for understanding the film growth mechanism of high quality perovskite film, and it provides a facile strategy to fabricate high efficiency perovskite solar cells.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50977028,51077048)
文摘In some control strategies of the direct-rive permanent magnet generator(DDPMG),the mathematics model is excessively simplified and some complex nonlinear characteristics,such as core saturation and cross-saturation,are generally neglected.To solve this problem,this paper utilizes the frozen element permeability method to compute the armature self-and mutual-inductance,permanent magnet d-and q-axis flux varying with d-axis and q-axis current,then an improved model is presented in which the core saturation and cross-saturation between d-axis and q-axis are considered effectively.Based on this model,the method for computing the performance of the generators is also proposed.Taking a 1.5-MW DDPMG as an example,the time-stepping finite element method(T-S FEM) is adopted to analyze the performance with no-load and loaded conditions,the results show a good agreement with the ones obtained by the improved model.Compared with the simplified model,it is demonstrated that the presented model has the high efficiency and reliability and can provide a good reference for optimization design of DDPMG and other PM motors.