In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water con...In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.展开更多
[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Dispos...[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Disposable excessive soak- ing and regression relation of nutrition infusion of substrate plots were studied by design of 13 time gradient. Plant nutrition absorption and growth effects after sub- strate plots immersed by water were investigated by growing tomato. [Result] Con- centration and time of the three nutrition immersed in water had the regression equation of each, as follows: N=-2E-05t2+0.016 lt+2.0553, P=0.002 2t+2.248 5 and K=0.004 7t+0.875 8. With nutrition loss of the three, however, loss amount was al- most same with variance analysis of regression equation, which may result from its volatilization. Regression equations of P and K were: P=0.125 7t-0.117, and K=0.022 5t.1514, which led to adverse impact on plant absorption of N and K above ground, whose equations were N=20.64e-4E-0.4t, and K=E-06t2-0.011 3t+29.055. Meanwhile, un- der the condition, sound seedling index was not impacted a lot by excessive immer- sion. [Conclusion] This study has provided theoretical reference for guidance of sub- strate plot soaking method, cultivation and regulation, and breeding, as well as agri- cultural production.展开更多
The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten fo...The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...展开更多
True-triaxial compression tests were carried out on cubic granite samples with a circular through hole using a true-triaxial testing system to investigate the influence of saturated water content(SWC) on the failure p...True-triaxial compression tests were carried out on cubic granite samples with a circular through hole using a true-triaxial testing system to investigate the influence of saturated water content(SWC) on the failure process and characteristics of a circular tunnel of surrounding rocks. The spalling failure under SWC can be divided into four periods: calm period, buckling deformation period, period of rock fragment gradual buckling and exfoliation, and period of formation of symmetrical V-shaped notches. When the horizontal axial and vertical stresses were constant, the spalling failure severity was reduced with the increase in lateral stress. Under natural water content, a strong rockburst with dynamic failure characteristics occurred on the circular hole sidewall. Under SWC, the failure severity was reduced and the circular hole sidewall experienced spalling failure, exhibiting progressive static failure characteristics.Therefore, water can reduce the failure severity of surrounding rocks in deep underground engineering, which has a certain guiding significance for the prevention and control of rockbursts.展开更多
基金The Natural Science Foundation of Jiangsu Province(No. BK2011618)
文摘In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.
基金Supported by Action Programs of Service Business of Scientists and Engineers in MOST(2009GJA00026)Science and Technology Project of Beijing Municipal Bureau of Agriculture(2010020101)+1 种基金Science and Technology project of Beijing Municipal Bureau of Agriculture(011050465100002)Science and Technology Project of Beijing Academy of Agricultural and Forestry Sciences(2010A016)~~
文摘[Objective] The aim was to study on impacts of excessive soaking N, P, and K insubstrate plots of and seedling growth. [Method] Substrate was designed to add additional 1/2 water after saturation and expansion. Disposable excessive soak- ing and regression relation of nutrition infusion of substrate plots were studied by design of 13 time gradient. Plant nutrition absorption and growth effects after sub- strate plots immersed by water were investigated by growing tomato. [Result] Con- centration and time of the three nutrition immersed in water had the regression equation of each, as follows: N=-2E-05t2+0.016 lt+2.0553, P=0.002 2t+2.248 5 and K=0.004 7t+0.875 8. With nutrition loss of the three, however, loss amount was al- most same with variance analysis of regression equation, which may result from its volatilization. Regression equations of P and K were: P=0.125 7t-0.117, and K=0.022 5t.1514, which led to adverse impact on plant absorption of N and K above ground, whose equations were N=20.64e-4E-0.4t, and K=E-06t2-0.011 3t+29.055. Meanwhile, un- der the condition, sound seedling index was not impacted a lot by excessive immer- sion. [Conclusion] This study has provided theoretical reference for guidance of sub- strate plot soaking method, cultivation and regulation, and breeding, as well as agri- cultural production.
基金Supported by Key Project of Science and Technology Research of Ministry of Education(308021)Chang Jiang Scholars Innovation Team of Ministry of Education(IRT0811)Geological Survey Project of China Geological Survey(1212010331302)~~
文摘The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...
基金financial support from the National Natural Science Foundation of China (Nos.51904335,41630642)。
文摘True-triaxial compression tests were carried out on cubic granite samples with a circular through hole using a true-triaxial testing system to investigate the influence of saturated water content(SWC) on the failure process and characteristics of a circular tunnel of surrounding rocks. The spalling failure under SWC can be divided into four periods: calm period, buckling deformation period, period of rock fragment gradual buckling and exfoliation, and period of formation of symmetrical V-shaped notches. When the horizontal axial and vertical stresses were constant, the spalling failure severity was reduced with the increase in lateral stress. Under natural water content, a strong rockburst with dynamic failure characteristics occurred on the circular hole sidewall. Under SWC, the failure severity was reduced and the circular hole sidewall experienced spalling failure, exhibiting progressive static failure characteristics.Therefore, water can reduce the failure severity of surrounding rocks in deep underground engineering, which has a certain guiding significance for the prevention and control of rockbursts.