期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进卷积神经网络的食品异物自动识别方法
被引量:
3
1
作者
邓阿琴
胡平霞
《食品与机械》
北大核心
2022年第7期133-137,共5页
目的:提高食品中异物识别速度和精度。方法:在LeNet-5网络结构的基础上增加批量归一化层和Dropout层得到改进的CNN模型,利用此模型建立识别系统用于食品图像中异物自动识别。通过试验对所建模型性能进行分析。结果:与传统的模型相比,该...
目的:提高食品中异物识别速度和精度。方法:在LeNet-5网络结构的基础上增加批量归一化层和Dropout层得到改进的CNN模型,利用此模型建立识别系统用于食品图像中异物自动识别。通过试验对所建模型性能进行分析。结果:与传统的模型相比,该模型具有更高的检测精度和更快的识别速度,食品异物的识别准确率为99.75%,识别时间仅为0.332 s。结论:建立的饺子图像异物识别模型具有较好的检测速度和识别精度。
展开更多
关键词
食品
图像
异物识别
LeNet-5网络
CNN模型
饺子图像
下载PDF
职称材料
题名
基于改进卷积神经网络的食品异物自动识别方法
被引量:
3
1
作者
邓阿琴
胡平霞
机构
湖南环境生物职业技术学院
湖南农业大学
出处
《食品与机械》
北大核心
2022年第7期133-137,共5页
基金
湖南省高等职业教育教学改革研究项目(编号:ZJGB2020271)。
文摘
目的:提高食品中异物识别速度和精度。方法:在LeNet-5网络结构的基础上增加批量归一化层和Dropout层得到改进的CNN模型,利用此模型建立识别系统用于食品图像中异物自动识别。通过试验对所建模型性能进行分析。结果:与传统的模型相比,该模型具有更高的检测精度和更快的识别速度,食品异物的识别准确率为99.75%,识别时间仅为0.332 s。结论:建立的饺子图像异物识别模型具有较好的检测速度和识别精度。
关键词
食品
图像
异物识别
LeNet-5网络
CNN模型
饺子图像
Keywords
food image
foreign object identification
LeNet-5 network
CNN model
dumpling image
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进卷积神经网络的食品异物自动识别方法
邓阿琴
胡平霞
《食品与机械》
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部