This paper reports silicon and oxygen isotopes of 20 kinds of igneous rocks and their major elements from the eastern Manus Basin. Combining silicon and oxygen isotopic data from other studies, we suppose that both δ...This paper reports silicon and oxygen isotopes of 20 kinds of igneous rocks and their major elements from the eastern Manus Basin. Combining silicon and oxygen isotopic data from other studies, we suppose that both δ30Si and δ18O values increase with the increasing of SiO2 content. It means that the fractionation of silicon and oxygen isotopes are affected by the silica content. The positive correlation between CaO/Al2O3 ratios and MgO and that between Si/Al and SiO2 content indicate that clinopyroxene is the predominant mineral phase in our samples. We suppose that the fractionation of silicon and oxygen isotopes are influenced by mineral fractional crystallization. Probably, it is due to their different silicon and oxygen bridges. In this study, the δ30Simean value=-0.17‰±0.17‰ and δ18Omean value= +6.07‰±0.57‰ are higher than normal δ30Si and δ18O values of mantle, and we propose that these igneous rocks in the eastern Manus Basin are affected by hydrothermal alteration.展开更多
This study aimed to model the kinetic of hydro-distillation of Aquilaria malaccensis leaves oil in order to understand and optimize the extraction process. In addition, this study, for the first time, aimed to identif...This study aimed to model the kinetic of hydro-distillation of Aquilaria malaccensis leaves oil in order to understand and optimize the extraction process. In addition, this study, for the first time, aimed to identify the chemical compositions of the A. rnalaccensis leave-oil. By assessing both first-order kinetic model and the model of simultaneous washing and diffusion, the result indicated that the model of simultaneous washing and diffusion better describes the hydro-distillation mechanism of the essential oil from A. rnalaccensis leaves. The optimum time, solid to liquid ratio, and the heating power for extracting the highest amount of essential oil were found to be around 3 h, 1:10 (g. ml-1), and 300 W respectively. Yellow essential oil with a strong smell and a yield of 0.05 v/w was extracted by hydro-distillation Clevenger apparatus. Chemical compounds of the essential oil were analyzed using gas chromatography-mass spectroscopy (GC/MS), which resulted in identification of 42 compounds that constitute 93% of essential oil. Among the identified components, Pentadecanal (32.082%), 9-Octadecenal, (Z) (15.894%), and Tetradecanal (6.927%) were the major compounds. Considering the fact that all the identified major components possess pesticidal properties, A. malaccensis leaves can be regarded as a promising natural source for producing pesticides.展开更多
基金supported by the National Key Basic Research Program of China (Grant No. 2013CB429700)National Natural Science Foundation of China (Grant Nos. 40976027, 40830849 and 40906029)Shandong Province Natural Science Foundation for Distinguished Young Scholars (Grant No. JQ200913)
文摘This paper reports silicon and oxygen isotopes of 20 kinds of igneous rocks and their major elements from the eastern Manus Basin. Combining silicon and oxygen isotopic data from other studies, we suppose that both δ30Si and δ18O values increase with the increasing of SiO2 content. It means that the fractionation of silicon and oxygen isotopes are affected by the silica content. The positive correlation between CaO/Al2O3 ratios and MgO and that between Si/Al and SiO2 content indicate that clinopyroxene is the predominant mineral phase in our samples. We suppose that the fractionation of silicon and oxygen isotopes are influenced by mineral fractional crystallization. Probably, it is due to their different silicon and oxygen bridges. In this study, the δ30Simean value=-0.17‰±0.17‰ and δ18Omean value= +6.07‰±0.57‰ are higher than normal δ30Si and δ18O values of mantle, and we propose that these igneous rocks in the eastern Manus Basin are affected by hydrothermal alteration.
文摘This study aimed to model the kinetic of hydro-distillation of Aquilaria malaccensis leaves oil in order to understand and optimize the extraction process. In addition, this study, for the first time, aimed to identify the chemical compositions of the A. rnalaccensis leave-oil. By assessing both first-order kinetic model and the model of simultaneous washing and diffusion, the result indicated that the model of simultaneous washing and diffusion better describes the hydro-distillation mechanism of the essential oil from A. rnalaccensis leaves. The optimum time, solid to liquid ratio, and the heating power for extracting the highest amount of essential oil were found to be around 3 h, 1:10 (g. ml-1), and 300 W respectively. Yellow essential oil with a strong smell and a yield of 0.05 v/w was extracted by hydro-distillation Clevenger apparatus. Chemical compounds of the essential oil were analyzed using gas chromatography-mass spectroscopy (GC/MS), which resulted in identification of 42 compounds that constitute 93% of essential oil. Among the identified components, Pentadecanal (32.082%), 9-Octadecenal, (Z) (15.894%), and Tetradecanal (6.927%) were the major compounds. Considering the fact that all the identified major components possess pesticidal properties, A. malaccensis leaves can be regarded as a promising natural source for producing pesticides.