期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
几种馏油剂的研究进展 被引量:6
1
作者 彭懿 贾天柱 《中成药》 CAS CSCD 北大核心 2007年第5期734-736,共3页
关键词 馏油剂 黑豆 蛋黄 苦豆子 竹沥 山楂核
下载PDF
Characterization and Modification of Indonesian Natural Zeolite for Hydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction
2
作者 Wega Tnsunaryant Akhmad Syoufian Suryo Purwono 《Journal of Chemistry and Chemical Engineering》 2013年第2期175-180,共6页
Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activ... Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activated using hydrothermal treatment at temperature 500 ℃ for 6 h (produced ZAAHd), the ZA sample was treated with hydrothermal followed by Microwave (produced ZAAHdM), the ZA sample was treated with HCI 3 N at temperature of 90 ℃ for 30 min (produced ZAAH), the ZAAH sample was heated in to microwave (produced ZAAHM), the ZAAHM was treated hydrothermal (produced ZAAHMHd), the ZAAHMHd sample was heated in to microwave (produced ZAAHMHdM), soaking of natural zeolit activated by HCl-microwave-hydrothermal-microwave in NH4NO3 1 N which was stirred using stirer at room temperature for 24 h (produced ZAAHMHdMN) and the ZAAHMHdMN sample was heated into microwave (ZAAHMHdMNM). The heating process by microwave was conducted at 550 watt for 15 rain. Catalyst characterization involved determination of the number of total acid sites using gravimetric method with vapour adsorption of NH3 and pyridine, catalyst crystallinity by XRD (X-ray diffraction) and TO4 (T= Si and AI) site by infra red spectrophotometer (IR). Hydrocracking of waste lubricants oil was performed in a fixed bed reactor of stainless steel at temperature of 450 ℃, H2 flow rate of 15 mL/min., feed/catalyst ratio of 5. Liquid products of the hydrocracking were analyzed using GC (gas chromatography). The characterization results showed that various modification of natural zeolite increased acidity and dealumination degree of the catalysts. Products of the hydrocracking were liquid, coke, and gas fractions. Liquid products consisted of gasoline fraction (C5-C12), diesel fraction (C12-C20), and heavy oil fraction (〉 C20).Thc conversion of liquid products was increased with the increase of catalyst acidity. The greatest liquid product conversion was produced by the ZAAHMHdMNM catalyst, i.e., 56.80%, with selectivity towards gasoline, diesel, and heavy oil fractions was 88.37%, 8.61% and 3.02%, respectively. The increase of catalyst acidity increased the selectivity of gasoline fraction. 展开更多
关键词 Natural zeolite CHARACTERIZATION MODIFICATION HYDROCRACKING waste lubricant oil.
下载PDF
Optimizing Vitamin E Purification from Unsaponiable Matter of Palm Fatty Acids Distillate by Low Temperature Solvent Crystallization
3
作者 Kgs Ahmadi Sri Kumalaningsih +1 位作者 Susinggsih Wijana Imam Santoso 《Journal of Food Science and Engineering》 2012年第10期557-563,共7页
Palm fatty acid distillate (PFAD), a by-product of deodorization in palm oil refining, contains about 0.7%-1% vitamin E. The advantage of PFAD over other vitamin E sources is higher amount of tocotrienols than that ... Palm fatty acid distillate (PFAD), a by-product of deodorization in palm oil refining, contains about 0.7%-1% vitamin E. The advantage of PFAD over other vitamin E sources is higher amount of tocotrienols than that of tocopherols. Vitamin E purification of unsaponiable matter of PFAD was aimed to remove other impurities to obtain high vitamin E concentration, mainly tocotrienols. This research used low temperature solvent crystallization to purify vitamin E. To optimize response of vitamin concentration, a response surface method was applied with three factors, i.e., the ratio between solvent and unsaponifiable matter (A), crystallization temperature (B), and crystallization time (C). The relation of three factors was quadratic with equation Y = -128.54361 + 41.33904A - 0.87995B + 1.58941C + 0.00290AB - 0.044324AC + 0.00120BC - 3.33113A2 - 0.039535B2 - 0.02710C2. The optimum crystallization condition was obtained at ratio of solventto unsaponifiable matter of 6.04:1, crystallization temperature of-10.54 ℃, and crystallization time of 24.16 hours. Vitamin E enriched fraction from optimum crystallization conditions contained vitamin E of 20.13% (w/w). 展开更多
关键词 Low tempareture solvent crystallization palm fatty acid distillate vitamin E enriched fraction unsaponifiable matter.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部