Although many aroma components have been identified in green tea leaves, the aroma compounds contributing to green tea's characteristic odor have not yet been reported. The authors recently reported that aroma compon...Although many aroma components have been identified in green tea leaves, the aroma compounds contributing to green tea's characteristic odor have not yet been reported. The authors recently reported that aroma components with a matcha-like odor are present in both green tea and black tea prepared from the Sayamakaori tea cuttivar. This matcha-like odor is similar to the odor of commercial available matcha (high-quality powdered green tea), and is a specific odor feature of green tea leaves. At present, the green-tea odor is thought to arise from the combination of a large number of constituents. Recent reports indicate that a complex interaction between olfactory receptors and odorants is important for the evaluation of the odors. Taking into consideration these findings, the authors investigated the aroma profile of green tea, focusing on the characteristic molecular structures of the constituents that give matcha-like odor. Using a combination of organic synthesis and gas chromatography-mass spectrometry plus gas chromatography-olfactometry, the authors identified aroma components with matcha-like odors in five other tea cultivars. This investigation also revealed that several compounds with a formyl group were important constituents of the aroma of green tea leaves, although the odor of each constituent was not individually similar to the tea's overall aroma. The authors found for the first time a group of key components that have the matcha-like odor.展开更多
Research on structure of tectonically deformed coals(TDC) is a key issue in coal and gas outburst prevention and coalbed methane(CBM) exploitation.This paper presents a summary on the research progress in TDC's st...Research on structure of tectonically deformed coals(TDC) is a key issue in coal and gas outburst prevention and coalbed methane(CBM) exploitation.This paper presents a summary on the research progress in TDC's structural-genetic classification,tectonic strain influence on coal microstructure,coal porosity system,coal chemical structure and constituents,and their relationship with the excess coalbed methane.Previous studies suggested that tectonic deformation had significant influence on coal microstructure,coal super microstructure,and even chemical macromolecular structure.The main mechanisms of coal deformation are the tectonic stress degradation and polycondensation metamorphism(dynamical metamorphism).Besides,under different deformation mechanisms,the ultra-and micro-structure and chemical constituents of TDC presented distinct characteristics.Based on these achievements,we propose one possible evolutionary trend of TDC with different deformation mechanisms,and suggest that the coal and gas outburst in the TDC,especially in the mylonitic coals,may be not only controlled by geological structure,but also influenced by the tectonic stress degradation of ductile deformation.Therefore,further study on TDC should be focused on the controlling mechanism of deformation on structure and composition of coal,generation conditions and occurrence state of excess coalbed methane from deformation mechanism of coal.展开更多
文摘Although many aroma components have been identified in green tea leaves, the aroma compounds contributing to green tea's characteristic odor have not yet been reported. The authors recently reported that aroma components with a matcha-like odor are present in both green tea and black tea prepared from the Sayamakaori tea cuttivar. This matcha-like odor is similar to the odor of commercial available matcha (high-quality powdered green tea), and is a specific odor feature of green tea leaves. At present, the green-tea odor is thought to arise from the combination of a large number of constituents. Recent reports indicate that a complex interaction between olfactory receptors and odorants is important for the evaluation of the odors. Taking into consideration these findings, the authors investigated the aroma profile of green tea, focusing on the characteristic molecular structures of the constituents that give matcha-like odor. Using a combination of organic synthesis and gas chromatography-mass spectrometry plus gas chromatography-olfactometry, the authors identified aroma components with matcha-like odors in five other tea cultivars. This investigation also revealed that several compounds with a formyl group were important constituents of the aroma of green tea leaves, although the odor of each constituent was not individually similar to the tea's overall aroma. The authors found for the first time a group of key components that have the matcha-like odor.
基金supported by National Natural Science Foundation of China (Grant Nos. 41030422,40972131,40940014)National Basic Research Program of China (Grant No. 2009CB219601)
文摘Research on structure of tectonically deformed coals(TDC) is a key issue in coal and gas outburst prevention and coalbed methane(CBM) exploitation.This paper presents a summary on the research progress in TDC's structural-genetic classification,tectonic strain influence on coal microstructure,coal porosity system,coal chemical structure and constituents,and their relationship with the excess coalbed methane.Previous studies suggested that tectonic deformation had significant influence on coal microstructure,coal super microstructure,and even chemical macromolecular structure.The main mechanisms of coal deformation are the tectonic stress degradation and polycondensation metamorphism(dynamical metamorphism).Besides,under different deformation mechanisms,the ultra-and micro-structure and chemical constituents of TDC presented distinct characteristics.Based on these achievements,we propose one possible evolutionary trend of TDC with different deformation mechanisms,and suggest that the coal and gas outburst in the TDC,especially in the mylonitic coals,may be not only controlled by geological structure,but also influenced by the tectonic stress degradation of ductile deformation.Therefore,further study on TDC should be focused on the controlling mechanism of deformation on structure and composition of coal,generation conditions and occurrence state of excess coalbed methane from deformation mechanism of coal.