In order to investigate the correlation between the variations in the environmental water quality indexes and the distance of water bodies from the planting region of vetiver, samples of surface water were gathered fr...In order to investigate the correlation between the variations in the environmental water quality indexes and the distance of water bodies from the planting region of vetiver, samples of surface water were gathered from the water bodies surrounding an abandoned coal gangue mountain of Dahead coal mine (Dahe, Liupanshui, Guizhou Province) based on the method of field survey and typical analysis. According to the results, the planting of vetiver could effectively purify the water bodies surrounding the coal gangue mountain. Detailed findings include three aspects:(1) The main pollutants detected in water bodies around the coal gangue mountain were SO4 2-, NO3 -, Fe and Cu, with a concentration of 869.45, 35.16, 26.06, and 40.85 mg/L respectively in wet season and all exceeded the national environmental standards for surface water.(2) The pH values of water bodies 150~200 m away from the vetiver planting region stayed within the limits of national environmental standards for surface water and presented a homogeneous feature, revealing that vetiver has the capacity to adjust the pH of the surrounding water body.(3) The contents of Fe, Mn, Cu, SO4 2-, and NO3 - under all treatments, tended to increase with the increasing distance of water bodies from the vetiver planting region;it means the shorter the distance between the water body and the vetiver planting region is, the higher the adsorption rate and purification effects will be;the optimal concentrations of Fe, Mn, and Cu were 0 mg/L, much lower than the national environmental standards for surface water.展开更多
The plant aerial parts of three species, Urtica dioica L., Viola odorata L. and Melissa officinalis L. were collected at randomly-different locations, according to altitudes in May 2010. The aerial parts of Urtica wer...The plant aerial parts of three species, Urtica dioica L., Viola odorata L. and Melissa officinalis L. were collected at randomly-different locations, according to altitudes in May 2010. The aerial parts of Urtica were collected within three replications from different locations: Biare 1,090 masl (meters above sea level), Tawile 1,450 masl and Awiser 1,680 masl. The aerial parts of Viola and Melissa were collected randomly within three replications at different locations: Biare 1,090 masl, Degashikhan 1,250 masl and Tawile 1,450 masl. The extracts of the aerial parts of these species were purified by filtrations for several times in preparation for HPLC analyses. The chromatograms of Urtica indicated the presence of five major important alkaloid components (fragrine, benzylisoquinoline, scopoletin, glucoquinone and dotriacotaine) and ten major important phenolic compounds (formic acid, tannin, chlorogenic acid, caffeoylmalic acid, anthocyanine, quercetin, zeaxanthin, luetin epoxide, coumarine and vanillin). All the concentrations of alkaloid and phenolic compounds were increased significantly due to higher altitudes, except that of alkaloid dotriacotaine. The chromatograms of Viola indicated the presence of four major important alkaloid components (violine, isoquinoline, cycloviolacin and luteolin-3-glucoronide) and ten major important phenolic compounds (formic acid, tannin, chlorogenic acid, caffeoylmalic acid, anthocyanine, quercetin, zeaxanthin, luetin epoxide, coumarine and vanillin). The results of the influence of altitudes showed that the concentrations of all alkaloids and phenolic compounds were increased significantly due to higher altitudes, except that of the alkaloid luteolin-3-glucoronide and the phenolic compounds zeaxanthin and luetin epoxide. The chromatograms of Melissa indicated the presence of five major essential oils (pinene, linalool, citronellol, geraniol and rosmarinic acid). Their quantitative evaluations were influenced by altitudes indicating that the concentrations of all oils were increased significantly due to the higher altitude, except that of the pinene.展开更多
文摘In order to investigate the correlation between the variations in the environmental water quality indexes and the distance of water bodies from the planting region of vetiver, samples of surface water were gathered from the water bodies surrounding an abandoned coal gangue mountain of Dahead coal mine (Dahe, Liupanshui, Guizhou Province) based on the method of field survey and typical analysis. According to the results, the planting of vetiver could effectively purify the water bodies surrounding the coal gangue mountain. Detailed findings include three aspects:(1) The main pollutants detected in water bodies around the coal gangue mountain were SO4 2-, NO3 -, Fe and Cu, with a concentration of 869.45, 35.16, 26.06, and 40.85 mg/L respectively in wet season and all exceeded the national environmental standards for surface water.(2) The pH values of water bodies 150~200 m away from the vetiver planting region stayed within the limits of national environmental standards for surface water and presented a homogeneous feature, revealing that vetiver has the capacity to adjust the pH of the surrounding water body.(3) The contents of Fe, Mn, Cu, SO4 2-, and NO3 - under all treatments, tended to increase with the increasing distance of water bodies from the vetiver planting region;it means the shorter the distance between the water body and the vetiver planting region is, the higher the adsorption rate and purification effects will be;the optimal concentrations of Fe, Mn, and Cu were 0 mg/L, much lower than the national environmental standards for surface water.
文摘The plant aerial parts of three species, Urtica dioica L., Viola odorata L. and Melissa officinalis L. were collected at randomly-different locations, according to altitudes in May 2010. The aerial parts of Urtica were collected within three replications from different locations: Biare 1,090 masl (meters above sea level), Tawile 1,450 masl and Awiser 1,680 masl. The aerial parts of Viola and Melissa were collected randomly within three replications at different locations: Biare 1,090 masl, Degashikhan 1,250 masl and Tawile 1,450 masl. The extracts of the aerial parts of these species were purified by filtrations for several times in preparation for HPLC analyses. The chromatograms of Urtica indicated the presence of five major important alkaloid components (fragrine, benzylisoquinoline, scopoletin, glucoquinone and dotriacotaine) and ten major important phenolic compounds (formic acid, tannin, chlorogenic acid, caffeoylmalic acid, anthocyanine, quercetin, zeaxanthin, luetin epoxide, coumarine and vanillin). All the concentrations of alkaloid and phenolic compounds were increased significantly due to higher altitudes, except that of alkaloid dotriacotaine. The chromatograms of Viola indicated the presence of four major important alkaloid components (violine, isoquinoline, cycloviolacin and luteolin-3-glucoronide) and ten major important phenolic compounds (formic acid, tannin, chlorogenic acid, caffeoylmalic acid, anthocyanine, quercetin, zeaxanthin, luetin epoxide, coumarine and vanillin). The results of the influence of altitudes showed that the concentrations of all alkaloids and phenolic compounds were increased significantly due to higher altitudes, except that of the alkaloid luteolin-3-glucoronide and the phenolic compounds zeaxanthin and luetin epoxide. The chromatograms of Melissa indicated the presence of five major essential oils (pinene, linalool, citronellol, geraniol and rosmarinic acid). Their quantitative evaluations were influenced by altitudes indicating that the concentrations of all oils were increased significantly due to the higher altitude, except that of the pinene.