This paper considers a discrete-time Geo/G/1 retrial queue where the retrial time has a general distribution and the server is subject to Bernoulli vacation policy. It is assumed that the server, after each service co...This paper considers a discrete-time Geo/G/1 retrial queue where the retrial time has a general distribution and the server is subject to Bernoulli vacation policy. It is assumed that the server, after each service completion, begins a process of search in order to find the following customer to be served with a certain probability, or begins a single vacation process with complementary probability. This paper analyzes the Markov chain underlying the queueing system and obtain its ergodicity condition. The generating functions of the number of customers in the orbit and in the system are also obtained along with the marginal distributions of the orbit size when the server is idle, busy or on vacation. Finally, the author gives two stochastic decomposition laws, and as an application the author gives bounds for the proximity between the system size distributions of the model and the corresponding model without retrials.展开更多
This paper analyzes a discrete-time multiple vacations finite-buffer queueing system with batch renewal input in which inter-arrival time of batches are arbitrarily distributed. Service and vacation times are mutually...This paper analyzes a discrete-time multiple vacations finite-buffer queueing system with batch renewal input in which inter-arrival time of batches are arbitrarily distributed. Service and vacation times are mutually independent and geometrically distributed. The server takes vacations when the system does not have any waiting jobs at a service completion epoch or a vacation completion epoch. The system is analyzed under the assumptions of late arrival system with delayed access and early arrival system. Using the supplementary variable and the imbedded Markov chain techniques, the authors obtain the queue-length distributions at pre-arrival, arbitrary and outside observer's ob- servation epochs for partial-batch rejection policy. The blocking probability of the first, an arbitrary- and the last-job in a batch have been discussed. The analysis of actual waiting-time distributions measured in slots of the first, an arbitrary- and the last-job in an accepted batch, and other performance measures along with some numerical results have also been investigated.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.11171019the Fundamental Research Funds for the Central Universities under Grant No.2011JBZ012the Program for New Century Excellent Talents in University under Grant No.NCET-11-0568
文摘This paper considers a discrete-time Geo/G/1 retrial queue where the retrial time has a general distribution and the server is subject to Bernoulli vacation policy. It is assumed that the server, after each service completion, begins a process of search in order to find the following customer to be served with a certain probability, or begins a single vacation process with complementary probability. This paper analyzes the Markov chain underlying the queueing system and obtain its ergodicity condition. The generating functions of the number of customers in the orbit and in the system are also obtained along with the marginal distributions of the orbit size when the server is idle, busy or on vacation. Finally, the author gives two stochastic decomposition laws, and as an application the author gives bounds for the proximity between the system size distributions of the model and the corresponding model without retrials.
文摘This paper analyzes a discrete-time multiple vacations finite-buffer queueing system with batch renewal input in which inter-arrival time of batches are arbitrarily distributed. Service and vacation times are mutually independent and geometrically distributed. The server takes vacations when the system does not have any waiting jobs at a service completion epoch or a vacation completion epoch. The system is analyzed under the assumptions of late arrival system with delayed access and early arrival system. Using the supplementary variable and the imbedded Markov chain techniques, the authors obtain the queue-length distributions at pre-arrival, arbitrary and outside observer's ob- servation epochs for partial-batch rejection policy. The blocking probability of the first, an arbitrary- and the last-job in a batch have been discussed. The analysis of actual waiting-time distributions measured in slots of the first, an arbitrary- and the last-job in an accepted batch, and other performance measures along with some numerical results have also been investigated.