Global climate change during the twentieth century had a significant impact on the glaciers that resulted in creation of new lakes and expansion of existing ones, and ultimately an increase in the number of glacial la...Global climate change during the twentieth century had a significant impact on the glaciers that resulted in creation of new lakes and expansion of existing ones, and ultimately an increase in the number of glacial lake outburst floods(GLOFs) in the Himalayan region. This study reports variation of the end-moraine dammed lakes in the high altitude Hindukush-Karakoram-Himalaya(HKH) region of Pakistan to evaluate future floods hazard under changing climate in this region. An integrated temporal remote sensing and Geographic information system(GIS) based approach using satellite images of Landsat-7 and 8 was adopted to detect 482 endmoraine dammed lakes out of which 339 lakes(>0.02 km2) were selected for temporal change analysis during the 2001-2013 period. The findings of the study revealed a net expansion in the end-moraine dammed lakes area in the Karakoram(about 7.7%) and in the Himalayas(4.6%), while there was a net shrinkage of about 1.5% in the lakes area in the Hindukush range during this period. The percentage increase in the lakes' area was highest above 4500 m asl in the Hindukush, within 3500-4000 m asl in the Himalayas and below 3500 m asl in the Karakoram range. The overall positive change in the lakes' area appears to prevail in various altitudinal ranges of the region. The heterogeneous areal changes in the endmoraine dammed lakes might be attributed to different climate regimes and glacial hydrodynamics in the three HKH ranges. A periodic monitoring of the glacial lakes and their associated glaciers is essential for developing effective hazard assessment and risk reduction strategies for this high altitude Himalayan region.展开更多
Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for th...Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.展开更多
基金support of International Centre for Integrated Mountain Development (ICIMOD) and Pakistan Meteorlogical Department (PMD) for undertaking this study
文摘Global climate change during the twentieth century had a significant impact on the glaciers that resulted in creation of new lakes and expansion of existing ones, and ultimately an increase in the number of glacial lake outburst floods(GLOFs) in the Himalayan region. This study reports variation of the end-moraine dammed lakes in the high altitude Hindukush-Karakoram-Himalaya(HKH) region of Pakistan to evaluate future floods hazard under changing climate in this region. An integrated temporal remote sensing and Geographic information system(GIS) based approach using satellite images of Landsat-7 and 8 was adopted to detect 482 endmoraine dammed lakes out of which 339 lakes(>0.02 km2) were selected for temporal change analysis during the 2001-2013 period. The findings of the study revealed a net expansion in the end-moraine dammed lakes area in the Karakoram(about 7.7%) and in the Himalayas(4.6%), while there was a net shrinkage of about 1.5% in the lakes area in the Hindukush range during this period. The percentage increase in the lakes' area was highest above 4500 m asl in the Hindukush, within 3500-4000 m asl in the Himalayas and below 3500 m asl in the Karakoram range. The overall positive change in the lakes' area appears to prevail in various altitudinal ranges of the region. The heterogeneous areal changes in the endmoraine dammed lakes might be attributed to different climate regimes and glacial hydrodynamics in the three HKH ranges. A periodic monitoring of the glacial lakes and their associated glaciers is essential for developing effective hazard assessment and risk reduction strategies for this high altitude Himalayan region.
基金Rio Grande do Sul State Foundation for Research (FAPERGS), Brazil for financial support
文摘Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.