Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively...Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively,this paper proposes a novel process monitoring scheme based on orthogonal nonnegative matrix factorization(ONMF) and hidden Markov model(HMM). The new clustering technique ONMF is employed to separate data from different process modes. The multiple HMMs for various operating modes lead to higher modeling accuracy.The proposed approach does not presume the distribution of data in each mode because the process uncertainty and dynamics can be well interpreted through the hidden Markov estimation. The HMM-based monitoring indication named negative log likelihood probability is utilized for fault detection. In order to assess the proposed monitoring strategy, a numerical example and the Tennessee Eastman process are used. The results demonstrate that this method provides efficient fault detection performance.展开更多
In this paper we consider a Markov chain model in an ATM network, which has been studied by Dag and Stavrakakis. On the basis of the iterative formulas obtained by Dag and Stavrakakis, we obtain the explicit analytica...In this paper we consider a Markov chain model in an ATM network, which has been studied by Dag and Stavrakakis. On the basis of the iterative formulas obtained by Dag and Stavrakakis, we obtain the explicit analytical expression of the transition probability matrix. It is very simple to calculate the transition probabilities of the Markov chain by these expressions. In addition, we obtain some results about the structure of the transition probability matrix, which are helpful in numerical calculation and theoretical analysis.展开更多
基金Supported by the National Natural Science Foundation of China(61374140,61403072)
文摘Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively,this paper proposes a novel process monitoring scheme based on orthogonal nonnegative matrix factorization(ONMF) and hidden Markov model(HMM). The new clustering technique ONMF is employed to separate data from different process modes. The multiple HMMs for various operating modes lead to higher modeling accuracy.The proposed approach does not presume the distribution of data in each mode because the process uncertainty and dynamics can be well interpreted through the hidden Markov estimation. The HMM-based monitoring indication named negative log likelihood probability is utilized for fault detection. In order to assess the proposed monitoring strategy, a numerical example and the Tennessee Eastman process are used. The results demonstrate that this method provides efficient fault detection performance.
基金This work is supported by the National Key Project of China(No 970211017,the National Natural Science Foundation of China(No,10271102)and Hebei Province Doctoral Foundation(No.2002131)
文摘In this paper we consider a Markov chain model in an ATM network, which has been studied by Dag and Stavrakakis. On the basis of the iterative formulas obtained by Dag and Stavrakakis, we obtain the explicit analytical expression of the transition probability matrix. It is very simple to calculate the transition probabilities of the Markov chain by these expressions. In addition, we obtain some results about the structure of the transition probability matrix, which are helpful in numerical calculation and theoretical analysis.