提出一种基于粒子滤波器的机器人定位算法.首先利用一并行扩展卡尔曼滤波器作为粒子预测分布,将当前观测的部分信息融入,以改善滤波效果,减小所需粒子数;然后提出变密度函数边界的马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)重...提出一种基于粒子滤波器的机器人定位算法.首先利用一并行扩展卡尔曼滤波器作为粒子预测分布,将当前观测的部分信息融入,以改善滤波效果,减小所需粒子数;然后提出变密度函数边界的马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)重采样方法,以提高粒子的细化能力;最后结合普通重采样方法,提出一种改进的MCMC重采样的机器人定位算法,减少粒子匮乏效应的同时,提高了定位精度.实验结果表明,该算法较传统方法在计算复杂度、定位精度和鲁棒性方面都有显著提高.展开更多
This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and t...This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.展开更多
In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,c...In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,called the Adaptive Metropolis (AM) algorithm,to directly generate the samples of the target posterior distribution and implement the multidimensional integrals of likelihood function.Modulation classification is achieved along with joint estimation of unknown parameters by running an ergodic Markov Chain.Simulation results show that the proposed method has the advantages of high accuracy and robustness to phase and frequency offset.展开更多
文摘提出一种基于粒子滤波器的机器人定位算法.首先利用一并行扩展卡尔曼滤波器作为粒子预测分布,将当前观测的部分信息融入,以改善滤波效果,减小所需粒子数;然后提出变密度函数边界的马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)重采样方法,以提高粒子的细化能力;最后结合普通重采样方法,提出一种改进的MCMC重采样的机器人定位算法,减少粒子匮乏效应的同时,提高了定位精度.实验结果表明,该算法较传统方法在计算复杂度、定位精度和鲁棒性方面都有显著提高.
文摘This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.
文摘In this paper,a new likelihood-based method for classifying phase-amplitude-modulated signals in Additive White Gaussian Noise (AWGN) is proposed.The method introduces a new Markov Chain Monte Carlo (MCMC) algorithm,called the Adaptive Metropolis (AM) algorithm,to directly generate the samples of the target posterior distribution and implement the multidimensional integrals of likelihood function.Modulation classification is achieved along with joint estimation of unknown parameters by running an ergodic Markov Chain.Simulation results show that the proposed method has the advantages of high accuracy and robustness to phase and frequency offset.