假定模型参数的不确定性服从正态分布,根据贝叶斯原理,其最可能的分布是结合先验信息和观测信息得到的最大后验概率,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)抽样适用于此类反问题求解。鉴于随机论方法的巨大计算量,本研究利...假定模型参数的不确定性服从正态分布,根据贝叶斯原理,其最可能的分布是结合先验信息和观测信息得到的最大后验概率,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)抽样适用于此类反问题求解。鉴于随机论方法的巨大计算量,本研究利用BP(Back Propagation)神经网络及相对熵最小化来自适应加密训练数据,从而建立替代复杂正向程序的代理模型,并利用开发的不确定性分析程序对影响空泡份额的模型参数不确定性进行量化分析,选用的子通道程序为COBRA-IV。结果表明:在求得模型参数不确定性后,通过不确定性正向传递得到结果的95%置信区间对实验值的包络性较好,利用不确定性均值对模型进行标定得到的结果较基准值更接近实验值。因此,本研究建立的不确定性量化分析方法能较好适用于子通道程序的不确定性分析。展开更多
准确、合理地构建间歇性电源的发电功率模型对于电力系统的仿真分析与计算具有重要意义。提出了一种风光发电功率时间序列模拟的单变量与多变量马尔科夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)仿真方法。该模型针对风电场与光伏电...准确、合理地构建间歇性电源的发电功率模型对于电力系统的仿真分析与计算具有重要意义。提出了一种风光发电功率时间序列模拟的单变量与多变量马尔科夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)仿真方法。该模型针对风电场与光伏电站等多种类型的间歇性电源,构建发电功率时间序列的马尔科夫链,采用Gibbs抽样技术实现了单变量或多变量的时间序列模拟。不仅全面地分析了不同类型间歇性电源马尔科夫过程的特征与影响因素,并且在MCMC方法中考虑了多变量之间的相互联系,使模型能够适应多组间歇性电源彼此间存在相关性的情形。对德国2家电力公司控制区域内的风电场、光伏电站进行仿真模拟,通过统计特征参数的对比分析,验证了所提模型的有效性。展开更多
针对短采样宽带信号近似最大似然(approximated maximum likelihood,AML)方位估计计算量大的问题,将马尔科夫链-蒙特卡罗方法与近似最大似然方位估计相结合,提出一种基于Metropolis-Hastings抽样的近似最大似然方位估计方法(AMLMH)。该...针对短采样宽带信号近似最大似然(approximated maximum likelihood,AML)方位估计计算量大的问题,将马尔科夫链-蒙特卡罗方法与近似最大似然方位估计相结合,提出一种基于Metropolis-Hastings抽样的近似最大似然方位估计方法(AMLMH)。该方法将AML算法的空间谱函数作为信号的概率分布函数,并利用Metropolis-Hastings抽样方法从该概率分布函数中抽样。研究结果表明,AMLMH方法不但保持了原近似最大似然方位估计方法的优良性能,而且减小了计算量。展开更多
文摘假定模型参数的不确定性服从正态分布,根据贝叶斯原理,其最可能的分布是结合先验信息和观测信息得到的最大后验概率,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)抽样适用于此类反问题求解。鉴于随机论方法的巨大计算量,本研究利用BP(Back Propagation)神经网络及相对熵最小化来自适应加密训练数据,从而建立替代复杂正向程序的代理模型,并利用开发的不确定性分析程序对影响空泡份额的模型参数不确定性进行量化分析,选用的子通道程序为COBRA-IV。结果表明:在求得模型参数不确定性后,通过不确定性正向传递得到结果的95%置信区间对实验值的包络性较好,利用不确定性均值对模型进行标定得到的结果较基准值更接近实验值。因此,本研究建立的不确定性量化分析方法能较好适用于子通道程序的不确定性分析。
文摘准确、合理地构建间歇性电源的发电功率模型对于电力系统的仿真分析与计算具有重要意义。提出了一种风光发电功率时间序列模拟的单变量与多变量马尔科夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)仿真方法。该模型针对风电场与光伏电站等多种类型的间歇性电源,构建发电功率时间序列的马尔科夫链,采用Gibbs抽样技术实现了单变量或多变量的时间序列模拟。不仅全面地分析了不同类型间歇性电源马尔科夫过程的特征与影响因素,并且在MCMC方法中考虑了多变量之间的相互联系,使模型能够适应多组间歇性电源彼此间存在相关性的情形。对德国2家电力公司控制区域内的风电场、光伏电站进行仿真模拟,通过统计特征参数的对比分析,验证了所提模型的有效性。
文摘针对短采样宽带信号近似最大似然(approximated maximum likelihood,AML)方位估计计算量大的问题,将马尔科夫链-蒙特卡罗方法与近似最大似然方位估计相结合,提出一种基于Metropolis-Hastings抽样的近似最大似然方位估计方法(AMLMH)。该方法将AML算法的空间谱函数作为信号的概率分布函数,并利用Metropolis-Hastings抽样方法从该概率分布函数中抽样。研究结果表明,AMLMH方法不但保持了原近似最大似然方位估计方法的优良性能,而且减小了计算量。