Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C ...Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong展开更多
基金National Natural Science Foundation of China (30100144) and by Scientific Committee of Shenyang City (1011501900).
文摘Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong