期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Mallat算法的小波分解重构的心电信号处理 被引量:19
1
作者 钟丽辉 魏贯军 《电子设计工程》 2012年第2期57-59,共3页
为了实现对微弱低信噪比的心电信号的有效提取,采用了Mallat算法的小波分解重构法去除心电信号的噪声。首先确定小波分解重构的小波基;其次确定分解的层数;然后直接提取有用信号所在的频带(有用信号占优的频带)进行重构;最后,Matlab仿真... 为了实现对微弱低信噪比的心电信号的有效提取,采用了Mallat算法的小波分解重构法去除心电信号的噪声。首先确定小波分解重构的小波基;其次确定分解的层数;然后直接提取有用信号所在的频带(有用信号占优的频带)进行重构;最后,Matlab仿真MIT-BIT标准数据库中的心电信号表明小波分解重构法可以有效的去除心电信号中的多种干扰;同时比起传统滤波器法来说,小波分解与重构去噪法应用起来更方便。 展开更多
关键词 心电信号 马拉算法 小波分解重构法 基线漂移 肌电干扰
下载PDF
小波变换在数字图像处理中的应用 被引量:47
2
作者 王剑平 张捷 《现代电子技术》 2011年第1期91-94,共4页
小波变换在数字图像处理中的应用是小波变换典型的应用之一。由信号分析中傅里叶变换的不足引出小波变换,然后简单介绍了小波变换的定义和种类,分析了小波变换的性质和Mallat算法,总结了小波变换在数字图像处理中的四种应用:基于小波变... 小波变换在数字图像处理中的应用是小波变换典型的应用之一。由信号分析中傅里叶变换的不足引出小波变换,然后简单介绍了小波变换的定义和种类,分析了小波变换的性质和Mallat算法,总结了小波变换在数字图像处理中的四种应用:基于小波变换的图像压缩、图像去噪、图像增强和图像融合,分析了四种应用的过程及特点,同时进行了相应的Matlab试验与仿真。试验结果表明,小波变换在数字图像处理中的应用切实可行、简单方便、效果好、有很强的实用价值,有较好的应用前景。 展开更多
关键词 小波变换 马拉算法 图像处理 MATLAB
下载PDF
Response of fuzzy clustering on different threshold determination algorithms in spectral change vector analysis over Western Himalaya, India 被引量:2
3
作者 SINGH Sartajvir TALWAR Rajneesh 《Journal of Mountain Science》 SCIE CSCD 2017年第7期1391-1404,共14页
Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an ex... Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method. 展开更多
关键词 Change vector analysis (CVA) Fuzzymaximum likelihood classification (FMLC) Double-window flexible pace search (DFPS) Interactive trialand error (T&E) Pixel kernel window (PKW)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部