期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
约翰·穆勒:以阅读疗法治好抑郁症 被引量:8
1
作者 王波 《山东图书馆季刊》 2008年第2期22-25,共4页
约翰·穆勒是英国19世纪杰出的思想家,他在20岁的时候曾经患上典型的抑郁症,后来通过阅读马蒙特尔的回忆录和华兹华斯的诗集而成功地自行治愈,这件事彻底改变了他的人生观、幸福观,极大地丰富和深化了他对阅读的认识。该文介绍了约... 约翰·穆勒是英国19世纪杰出的思想家,他在20岁的时候曾经患上典型的抑郁症,后来通过阅读马蒙特尔的回忆录和华兹华斯的诗集而成功地自行治愈,这件事彻底改变了他的人生观、幸福观,极大地丰富和深化了他对阅读的认识。该文介绍了约翰.穆勒人生当中的这个重要事件,阐述了他关于阅读的一系列观点。 展开更多
关键词 约翰·穆勒 阅读史 阅读疗法 马蒙特尔 华兹华斯
下载PDF
Conditional autoregressive negative binomial model for analysis of crash count using Bayesian methods 被引量:1
2
作者 徐建 孙璐 《Journal of Southeast University(English Edition)》 EI CAS 2014年第1期96-100,共5页
In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackl... In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims. 展开更多
关键词 traffic safety crash count conditionalautoregressive negative binomial model Bayesian analysis Markov chain Monte Carlo
下载PDF
Nash Model Parameter Uncertainty Analysis by AM-MCMC Based on BFS and Probabilistic Flood Forecasting 被引量:4
3
作者 XING Zhenxiang RUI Xiaofang +2 位作者 FU Qiang JIYi ZHU Shijiang 《Chinese Geographical Science》 SCIE CSCD 2011年第1期74-83,共10页
A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which fu... A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision. 展开更多
关键词 Bayesian Forecasting System parameter uncertainty Markov Chain Monte Carlo simulation Adaptive Metropolis method probabilistic flood forecasting
下载PDF
One-step random-walk process of nanoparticles in cement-based materials 被引量:2
4
作者 Ali BAHARI Aref SADEGHI-NIK +3 位作者 Elena CERRO-PRADA Adel SADEGHI-NIK Mandana ROODBARI Yan ZHUGE 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1679-1691,共13页
Efficient modelling approaches capable of predicting the behavior and effects of nanoparticles in cement-based materials are required for conducting relevant experiments.From the microstructural characterization of a ... Efficient modelling approaches capable of predicting the behavior and effects of nanoparticles in cement-based materials are required for conducting relevant experiments.From the microstructural characterization of a cement-nanoparticle system,this paper investigates the potential of cell-based weighted random-walk method to establish statistically significant relationships between chemical bonding and diffusion processes of nanoparticles within cement matrix.LaSr_(0.5)C_(0.5)O_(3)(LSCO)nanoparticles were employed to develop a discrete event system that accounts for the behavior of individual cells where nanoparticles and cement components were expected to interact.The stochastic model is based on annihilation(loss)and creation(gain)of a bond in the cell.The model considers both chemical reactions and transport mechanism of nanoparticles from cementitious cells,along with cement hydration process.This approach may be useful for simulating nanoparticle transport in complex 2D cement-based materials systems. 展开更多
关键词 Markov chain Monte Carlo random-walk method Fokker-Planck equation LaSr_(0.5)C_(0.5)O_(3)(LSCO) CEMENT nanoparticle incorporation
下载PDF
SEMI-BLIND CHANNEL ESTIMATION OF MULTIPLE-INPUT/MULTIPLE-OUTPUT SYSTEMS BASED ON MARKOV CHAIN MONTE CARLO METHODS 被引量:1
5
作者 JiangWei XiangHaige 《Journal of Electronics(China)》 2004年第3期184-190,共7页
This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and t... This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness. 展开更多
关键词 Multiple-Input/Multiple-Output (MIMO) system Channel estimation Markov Chain Monte Carlo (MCMC) method
下载PDF
Distribution Patterns of Medicinal Plants along an Elevational Gradient in Central Himalaya,Nepal 被引量:1
6
作者 Maan B.ROKAYA Zuzana MÜNZBERGOVÁ +1 位作者 Mani R.SHRESTHA Binu TIMSINA 《Journal of Mountain Science》 SCIE CSCD 2012年第2期201-213,共13页
This study aimed to compare the distribution patterns and trends of plant parts used among different groups of medicinal plants, geographical regions,and between medicinal plants and all vascular plants.We used the pu... This study aimed to compare the distribution patterns and trends of plant parts used among different groups of medicinal plants, geographical regions,and between medicinal plants and all vascular plants.We used the published sources for elevation records of 2,331 medicinal plant species to interpolate presence between minimum and maximum elevations and estimated medicinal plant richness for each 100-m elevational band. Monte Carlo simulations were used to test whether differences in elevational distribution between different groups of medicinal plants were significant. Total number of medicinal plants as well as different groups showed unimodal relationship with elevation. The elevational distributions of medicinal plants significantly differ between regions and between medicinal plant groups.When comparing the richness of all medicinal plants to all vascular plants,Monte Carlo simulations indicated that the numbers of medicinal plants are higher than expected at low elevations.The highest richness of medicinal plants at low elevation could be possibly due to favorable environmental factors such as high temperature, rainfall,sunlight or due to higher density of human population and thus higher pressure on use of any plants in lower elevations. 展开更多
关键词 Species richness Rapoport's elevational rule Mid-domain effect Randomization test Unimodal pattern HIMALAYA Nepal
下载PDF
Potential-Decomposition Strategy in Markov Chain Monte Carlo Sampling Algorithms
7
作者 上官丹骅 包景东 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第11期854-856,共3页
We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in... We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude. 展开更多
关键词 potential-decomposition strategy Markov chain Monte Carlo sampling algorithms
下载PDF
Robustness analysis of underground powerhouse construction simulation based on Markov Chain Monte Carlo method 被引量:6
8
作者 ZHONG DengHua BI Lei +1 位作者 YU Jia ZHAO MengQi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第2期252-264,共13页
Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual constr... Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual construction, which may lead to discrepancies between the actual and planned schedules and increase the risk of total duration delay. Therefore, developing a robust construction scheduling technique is of vital importance for mitigating disturbance and improving completion probability. In the present study, the authors propose a robustness analysis method that involves underground powerhouse construction simulation based on the Markov Chain Monte Carlo(MCMC) method. Specifically, the MCMC method samples construction disturbances by considering the interrelationship between the states of parameters through a Markov state transition probability matrix, which is more robust and efficient than traditional sampling methods such as the Monte Carlo(MC) method. Additionally, a hierarchical simulation model coupling critical path method(CPM) and a cycle operation network(CYCLONE) is built, using which construction duration and robustness criteria can be calculated. Furthermore, a detailed measurement method is presented to quantize the robustness of underground powerhouse construction, and the setting model of the time buffer is proposed based on the MCMC method. The application of this methodology not only considers duration but also robustness, providing scientific guidance for engineering decision making. We analyzed a case study project to demonstrate the effectiveness and superiority of the proposed methodology. 展开更多
关键词 underground powerhouse construction schedule simulation model MCMC method ROBUSTNESS
原文传递
Comparing the VGCG model as the unification of dark sectors with observations 被引量:2
9
作者 LU JianBo CHEN LiDong +1 位作者 XU LiXin LI TianQiang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第4期796-800,共5页
Current observations indicate that 95% of the energy density in the universe is the unknown dark component.The dark component is considered composed of two fluids:dark matter and dark energy.Or it is a mixture of thes... Current observations indicate that 95% of the energy density in the universe is the unknown dark component.The dark component is considered composed of two fluids:dark matter and dark energy.Or it is a mixture of these two dark components,i.e.,one can consider it an exotic unknown dark fluid.With this consideration,the variable generalized Chaplygin gas(VGCG)model is studied with not dividing the unknown fluid into dark matter and dark energy parts in this paper.By using the Markov Chain Monte Carlo method,the VGCG model as the unification of dark sectors is constrained,and the constraint results on the VGCG model parameters are,n=0.00057+0.0001+0.0009-0.0006-0.0006,α=0.0015+0.0003+0.0017-0.0015-0.0015and B s=0.778+0.016+0.030-0.016-0.035,obtained by the cosmic microwave background data from the 7-year WMAP full data points,the baryon acoustic oscillation data from Sloan Digital Sky Survey(SDSS)and 2-degree Field Galaxy Redshift(2dFGRS)survey,and the Union2 type Ia supernova data with systematic errors.At last,according to the evolution of deceleration parameter it is shown that an expanded universe from deceleration to acceleration can be obtained in VGCG cosmology. 展开更多
关键词 variable generalized Chaplygin gas(VGCG) unification of dark matter and dark energy cosmic constraints
原文传递
Experimental warming shifts coupling of carbon and nitrogen cycles in an alpine meadow
10
作者 Song Wang Quan Quan +3 位作者 Cheng Meng Weinan Chen Yiqi Luo Shuli Niu 《Journal of Plant Ecology》 SCIE CSCD 2021年第3期541-554,共14页
Aims Terrestrial ecosystem carbon(C)uptake is remarkably regulated by nitrogen(N)availability in the soil.However,the coupling of C and N cycles,as reflected by C:N ratios in different components,has not been well exp... Aims Terrestrial ecosystem carbon(C)uptake is remarkably regulated by nitrogen(N)availability in the soil.However,the coupling of C and N cycles,as reflected by C:N ratios in different components,has not been well explored in response to climate change.Methods Here,we applied a data assimilation approach to assimilate 14 datasets collected from a warming experiment in an alpine meadow in China into a grassland ecosystem model.We attempted to evaluate how experimental warming affects C and N coupling as indicated by constrained parameters under ambient and warming treatments separately.Important Findings The results showed that warming increased soil N availability with decreased C:N ratio in soil labile C pool,leading to an increase in N uptake by plants.Nonetheless,C input to leaf increased more than N,leading to an increase and a decrease in the C:N ratio in leaf and root,respectively.Litter C:N ratio was decreased due to the increased N immobilization under high soil N availability or warming-accelerated decomposition of litter mass.Warming also increased C:N ratio of slow soil organic matter pool,suggesting a greater soil C sequestration potential.As most models usually use a fixed C:N ratio across different environments,the divergent shifts of C:N ratios under climate warming detected in this study could provide a useful benchmark for model parameterization and benefit models to predict C-N coupled responses to future climate change. 展开更多
关键词 Bayesian probabilistic inversion Markov-Chain Monte-Carlo(MCMC) WARMING carbon and nitrogen cycles STOICHIOMETRY alpine meadow
原文传递
STUDYING THE IDENTIFIABILITY OF EPIDEMIOLOGICAL MODELS USING MCMC 被引量:2
11
作者 ANTTISOLONEN HEIKKI HAARIO +1 位作者 JEAN MICHEL TCHUENCHE HERIETH RWEZAURA 《International Journal of Biomathematics》 2013年第2期155-172,共18页
Studying different theoretical properties of epidemiological models has been widely addressed, while numerical studies and especially the calibration of models, which are often complicated and loaded with a high numbe... Studying different theoretical properties of epidemiological models has been widely addressed, while numerical studies and especially the calibration of models, which are often complicated and loaded with a high number of unknown parameters, against mea- sured data have received less attention. In this paper, we describe how a combination of simulated data and Markov Chain Monte Carlo (MCMC) methods can be used to study the identifiability of model parameters with different type of measurements. Three known models are used as case studies to illustrate the importance of parameter identi- fiability: a basic SIR model, an influenza model with vaccination and treatment and a HIV-Malaria co-infection model. The analysis reveals that calibration of complex models commonly studied in mathematical epidemiology, such as the HIV Malaria co-dynamics model, can be difficult or impossible, even if the system would be fully observed. The pre- sented approach provides a tool for design and optimization of real-life field campaigns of collecting data, as well as for model selection. 展开更多
关键词 EPIDEMIOLOGY compartmental models MCMC parameter estimation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部