期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SAGA-SVR的马铃薯贮藏库温度预测方法
1
作者 胡兵 《保鲜与加工》 CAS 北大核心 2018年第4期49-54,共6页
马铃薯贮藏库温度受室外温度、室内马铃薯呼吸释放温度、通风降温等因素的影响难以准确预测,提出了一种改进遗传算法(Genetic Algorithm,GA)优化支持向量回归机(Support Vector Regression,SVR)的马铃薯贮藏库温度预测方法。该方法针对... 马铃薯贮藏库温度受室外温度、室内马铃薯呼吸释放温度、通风降温等因素的影响难以准确预测,提出了一种改进遗传算法(Genetic Algorithm,GA)优化支持向量回归机(Support Vector Regression,SVR)的马铃薯贮藏库温度预测方法。该方法针对支持向量回归机参数难以选择、容易陷入局部极小的缺点,引入了具有并行性、全局搜索能力强的GA算法,结合局部搜索能力强的模拟退火算法(Simulated Annealing,SA),实现支持向量回归机的自动寻优。以新疆某农产品加工公司马铃薯贮藏库实测温度数据为样本,建立SAGA-SVR马铃薯贮藏库温度预测模型,进行贮藏库温度准确的预测。仿真结果表明,与GA-SVR、反向传播(Back Propagation,BP)温度预测模型的预测结果相比较,SAGASVR预测结果优于GA-SVR、BP预测结果,具有良好的预测效果。该预测方法较好地解决了系统非线性、小样本等问题,为类似应用场合地温度预测提供参考。 展开更多
关键词 马铃薯贮藏库 温度预测 遗传算法 支持向量回归机 模拟退火算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部