期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
原位制备钛酸锶钡/铌酸锶钡复相陶瓷的研究 被引量:5
1
作者 周宗辉 程新 杜丕一 《无机化学学报》 SCIE CAS CSCD 北大核心 2005年第6期873-878,F009,共7页
Composite ceramics of 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 (BSTN) with coexistence of barium strontium titanate, Ba1-xSrxTiO3 (BST), and strontium barium niobate, SrxBa1-xNb2O6 (SBN) phases were successfully ... Composite ceramics of 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 (BSTN) with coexistence of barium strontium titanate, Ba1-xSrxTiO3 (BST), and strontium barium niobate, SrxBa1-xNb2O6 (SBN) phases were successfully prepared in situ by controlling excess components according to a specially designed formula of 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 and by using a traditional ceramic process. X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectrometer (EDS) were used to characterize the phase composition, morphology and the micro-area chemical composition of the composite ceramics. The results showed that the SBN tungsten bronze phase appeared and coexisted stably with the BST perovskite phase when the excess content of Nb2O5 was >6mol%, whereas the BST perovskite phase formed and coexisted stably with the SBN tungsten bronze phase when the excess content of TiO2 was >5.3mol%. In the case of the two phases being equivalent to each other in BSTN composite ceramics, Nb2O5 was hard to be resolved into the perovskite phase, however, a few of TiO2 was easy to be resolved in the tungsten bronze phase. The microstructure of the composite ceramics were consisted of two kinds of grains. The smaller polygonal grains were belonged to the BST phase, and the larger ones to the SBN phase. The coexistence of the two phases inhibited the growth of the BST crystal. The density of microstructure of the composite ceramic was higher than that of both the pure BST and SBN calcined at the same temperature for the same time. 展开更多
关键词 BSTN复相陶瓷 钛酸锶钡 铌酸锶钡 原位复合法 制备 驰豫型铁电陶瓷 晶体结构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部