This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found th...This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.展开更多
In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for...In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.展开更多
Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramat...Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc., has been introduced.展开更多
We consider the escape of the particles multi-state noise. It is shown that, the noise can make over fluctuating potential barrier for a system only driven by a the particles escape over the fluctuating potential barr...We consider the escape of the particles multi-state noise. It is shown that, the noise can make over fluctuating potential barrier for a system only driven by a the particles escape over the fluctuating potential barrier in some circumstances; but in other circumstances, it can not. If the noise can make the particle escape over the fluctuating potential barrier, the mean first passage time (MFPT) can display the phenomenon of multi-resonant-activation. For this phenomenon, there are two kinds of resonant activation to appear. One is resonant activation for the MFPTs as the function of the flipping rates of the fluctuating potential barrier; the other is that for the MFPTs as the functions of the transition rates of the multi-state noise.展开更多
The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vecto...The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vector-based hybrid pulse width modulation) for a reduced harmonic distortion and switching loss. Associated electromagnetic interference mitigation and cooling requirements are significantly reduced. Voltage source inverter drives a three-phase MLC200 flywheel. The modularity of the proposed topology also simplifies overall system design and manufacturability. The system topology and control strategy are discussed. Simulation results are presented to illustrate the harmonic distortion and switching loss reduction and reduced line current ripple.展开更多
This paper presents the study of vibration in each element of hard disk drive, especially the resonance of the actuator arm. The resonance occurs in hard disk drive is considered as one of the quality controlled param...This paper presents the study of vibration in each element of hard disk drive, especially the resonance of the actuator arm. The resonance occurs in hard disk drive is considered as one of the quality controlled parameter. The main purpose of the research is to investigate the relationship between the pivot bearing assembly process and the natural frequency of the actuator arm. The experiment is designed using the information from the hard disk drive manufacturer. The selected pivot bearing assembly process parameters have been controlled. The modal analysis of the assembled actuator arms has been done. The experiment results show the relationship of the specific process parameters and some of the actuator arm's modal frequency. The results also show that the affected vibration mode is the torsion mode only.展开更多
The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and f...The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and function of MC,analyses its drive mode and control method and applies PLC to control its frequency transducer directly to help the motor work more stable.Based on the control requirements of bridge,trolley,Hoist,the control system of bridge applies a drive mode with 2-drag2 drive model on both sides and a multi-control method to realize simultaneous runningof two sides,1-drag-1 model on through-going axes and closed loop control method finish the precise location of trolley,and the using of 1-drag-1 model drive mode and closed loop control method solves the protect control difficulty of hoist which stops/starts repeatedly and changes speed.展开更多
DTC (direct torque control) can produce quick and robust response, but it has the problems of large torque ripples and inconstant inverter switching frequency. This paper introduces a modified direct torque control ...DTC (direct torque control) can produce quick and robust response, but it has the problems of large torque ripples and inconstant inverter switching frequency. This paper introduces a modified direct torque control based on the SVM (space vector modulation) for IPMSM (interior permanent magnet synchronous motor) drive. Two PI (proportional-integral) controllers regulate the flux and torque, respectively, and the inverter is controlled by the SVM technique in the proposed DTC system. Simulation results show that the performance of the proposed DTC system has been improved with respect to the conventional DTC. The DTC system can effectively reduce the flux and torque ripples.展开更多
In this paper, we have improved the fast ignition scheme in order to have more authority needed for highenergy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we empl...In this paper, we have improved the fast ignition scheme in order to have more authority needed for highenergy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma.It is found that the wavelength of 0.53 μm and the intensity of about 1020W/cm^2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances.展开更多
文摘This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.
基金The National Natural Science Foundation of China(No. 60974116 )the Research Fund of Aeronautics Science (No.20090869007)Specialized Research Fund for the Doctoral Program of Higher Education (No. 200902861063)
文摘In order to effectively control the working state of the gyroscope in drive mode, the drive characteristics of the micro electromechanical system (MEMS) gyroscope are analyzed in principle. A novel drive circuit for the MEMS gyroscope in digital closed-loop control is proposed, which utilizes a digital phase-locked loop (PLL) in frequency control and an automatic gain control (AGC) method in amplitude control. A digital processing circuit with a field programmable gate array (FPGA) is designed and the experiments are carried out. The results indicate that when the temperature changes, the drive frequency can automatically track the resonant frequency of gyroscope in drive mode and that of the oscillating amplitude holds at a set value. And at room temperature, the relative deviation of the drive frequency is 0.624 ×10^-6 and the oscillating amplitude is 8.0 ×10^-6, which are 0. 094% and 18. 39% of the analog control program, respectively. Therefore, the control solution of the digital PLL in frequency and the AGC in amplitude is feasible.
基金National Natural Science Foundation of China ( No. 50976046)
文摘Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc., has been introduced.
基金Supported by National Natural Science Foundation of China under Grant No. 10975079by K.C. Wong Magna Fund of Ningbo University in Chinaby the Ningbo Natural Sciences Foundation in China
文摘We consider the escape of the particles multi-state noise. It is shown that, the noise can make over fluctuating potential barrier for a system only driven by a the particles escape over the fluctuating potential barrier in some circumstances; but in other circumstances, it can not. If the noise can make the particle escape over the fluctuating potential barrier, the mean first passage time (MFPT) can display the phenomenon of multi-resonant-activation. For this phenomenon, there are two kinds of resonant activation to appear. One is resonant activation for the MFPTs as the function of the flipping rates of the fluctuating potential barrier; the other is that for the MFPTs as the functions of the transition rates of the multi-state noise.
文摘The operation of a motor drive for high-power, high-speed applications, especially for the permanent-magnet synchronous AC motors with regeneration capability is presented. Power system utilizes a SVHPWM (space-vector-based hybrid pulse width modulation) for a reduced harmonic distortion and switching loss. Associated electromagnetic interference mitigation and cooling requirements are significantly reduced. Voltage source inverter drives a three-phase MLC200 flywheel. The modularity of the proposed topology also simplifies overall system design and manufacturability. The system topology and control strategy are discussed. Simulation results are presented to illustrate the harmonic distortion and switching loss reduction and reduced line current ripple.
文摘This paper presents the study of vibration in each element of hard disk drive, especially the resonance of the actuator arm. The resonance occurs in hard disk drive is considered as one of the quality controlled parameter. The main purpose of the research is to investigate the relationship between the pivot bearing assembly process and the natural frequency of the actuator arm. The experiment is designed using the information from the hard disk drive manufacturer. The selected pivot bearing assembly process parameters have been controlled. The modal analysis of the assembled actuator arms has been done. The experiment results show the relationship of the specific process parameters and some of the actuator arm's modal frequency. The results also show that the affected vibration mode is the torsion mode only.
基金Supported by the National High Technology Research and Development Program of China(No.SQ2010AA0401265006)
文摘The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and function of MC,analyses its drive mode and control method and applies PLC to control its frequency transducer directly to help the motor work more stable.Based on the control requirements of bridge,trolley,Hoist,the control system of bridge applies a drive mode with 2-drag2 drive model on both sides and a multi-control method to realize simultaneous runningof two sides,1-drag-1 model on through-going axes and closed loop control method finish the precise location of trolley,and the using of 1-drag-1 model drive mode and closed loop control method solves the protect control difficulty of hoist which stops/starts repeatedly and changes speed.
文摘DTC (direct torque control) can produce quick and robust response, but it has the problems of large torque ripples and inconstant inverter switching frequency. This paper introduces a modified direct torque control based on the SVM (space vector modulation) for IPMSM (interior permanent magnet synchronous motor) drive. Two PI (proportional-integral) controllers regulate the flux and torque, respectively, and the inverter is controlled by the SVM technique in the proposed DTC system. Simulation results show that the performance of the proposed DTC system has been improved with respect to the conventional DTC. The DTC system can effectively reduce the flux and torque ripples.
基金Supported by the Research Council of University of Guilan
文摘In this paper, we have improved the fast ignition scheme in order to have more authority needed for highenergy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma.It is found that the wavelength of 0.53 μm and the intensity of about 1020W/cm^2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances.