A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to impro...A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to improve the vehicle stability. The control algorithm was developed using a two-degree-of-freedom(DOF) vehicle model. A pseudo control vector was calculated by a sliding mode controller to minimize the difference between the desired and actual vehicle motions. A pseudo-inverse controller then allocated the control inputs which included driving torques and steering angles of the four wheels according to the pseudo control vector. If one or more actuators were saturated or in a failure state, the control inputs are re-allocated by the algorithm. The algorithm was evaluated in Matlab/Simulink by using an 8-DOF nonlinear vehicle model. Simulations of sinusoidal input maneuver and double lane change maneuver were executed and the results were compared with those for a sliding mode control. The simulation results show that the vehicle controlled by the control allocation algorithm has better stability and trajectory-tracking performance than the vehicle controlled by the sliding mode control. The vehicle controlled by the control allocation algorithm still has good handling and stability when one or more actuators are saturated or in a failure situation.展开更多
In this paper,according to the old people's physical characteristics and their technical requirements for comfort and mastery when operating the robot,a control approach driven by tactile and slip senses is invest...In this paper,according to the old people's physical characteristics and their technical requirements for comfort and mastery when operating the robot,a control approach driven by tactile and slip senses is investigated to control the elderly-assistant & walking-assistant robot. First,on the basis of the proposed driving control system program of tactile and slip,a detection system of tactile and slip senses are designed. Based on the tactile and slip feature representation and extraction,an improved classification and recognition method is proposed which combines K-nearest neighbor (KNN) algorithm and K-means algorithm. And then,a robot control system based on TMS320F2812 is designed in this paper,including its hardware and software design. Then,a moving control method including the fuzzy adaptive control algorithm is presented for the walking-assistant robot to realize some different moving properties. At last,by the experimental verification in the walking-assistant robot,the research results show that the tactile and slip senses detection and recognition method is effective,and the whole control system has good feasibility and adaptability.展开更多
基金Project(51175015)supported by the National Natural Science Foundation of ChinaProject(2012AA110904)supported by the National High Technology Research and Development Program of China
文摘A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to improve the vehicle stability. The control algorithm was developed using a two-degree-of-freedom(DOF) vehicle model. A pseudo control vector was calculated by a sliding mode controller to minimize the difference between the desired and actual vehicle motions. A pseudo-inverse controller then allocated the control inputs which included driving torques and steering angles of the four wheels according to the pseudo control vector. If one or more actuators were saturated or in a failure state, the control inputs are re-allocated by the algorithm. The algorithm was evaluated in Matlab/Simulink by using an 8-DOF nonlinear vehicle model. Simulations of sinusoidal input maneuver and double lane change maneuver were executed and the results were compared with those for a sliding mode control. The simulation results show that the vehicle controlled by the control allocation algorithm has better stability and trajectory-tracking performance than the vehicle controlled by the sliding mode control. The vehicle controlled by the control allocation algorithm still has good handling and stability when one or more actuators are saturated or in a failure situation.
基金State Key Laboratory of Robotics and System(HIT) in China(No.SKLRS-2009-MS-02)
文摘In this paper,according to the old people's physical characteristics and their technical requirements for comfort and mastery when operating the robot,a control approach driven by tactile and slip senses is investigated to control the elderly-assistant & walking-assistant robot. First,on the basis of the proposed driving control system program of tactile and slip,a detection system of tactile and slip senses are designed. Based on the tactile and slip feature representation and extraction,an improved classification and recognition method is proposed which combines K-nearest neighbor (KNN) algorithm and K-means algorithm. And then,a robot control system based on TMS320F2812 is designed in this paper,including its hardware and software design. Then,a moving control method including the fuzzy adaptive control algorithm is presented for the walking-assistant robot to realize some different moving properties. At last,by the experimental verification in the walking-assistant robot,the research results show that the tactile and slip senses detection and recognition method is effective,and the whole control system has good feasibility and adaptability.