With the increasing concerns to energy shortage and environmental problems in modern society,the development of cheap,clean,and sustainable energy alternatives has been attracting tremendous attention globally.Among v...With the increasing concerns to energy shortage and environmental problems in modern society,the development of cheap,clean,and sustainable energy alternatives has been attracting tremendous attention globally.Among various strategies of renewable energy exploration,solar-driven water splitting into its compositional elements H2 and O2 is an ideal approach to convert and store renewable solar energy into chemical bonds.In recent few decades,as an emerging new type of catalysts,polyoxometalates(POMs)have been widely utilized for water splitting due to their versatile synthetic methodology and highly tunable physicochemical and photochemical properties.This critical review addresses the research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts,including plenary POMs,transition-metal-substituted POMs,POM@MOF composites,and POM-semiconductor hybrids,under UV,near UV and visible light irradiation.In addition,the catalytic mechanism for each reaction system has been thoroughly discussed and summarized.Finally,a comprehensive outlook of this research area is also prospected.展开更多
CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highl...CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highly active ceria promoted Pt catalyst(4%Pt-12%CeO_2/SiO_2;conversion≥99%at low( 500 ppm) and high( 2500 ppm) CO concentrations was developed for CO oxidation at ambient temperature in humid air.Catalyst preparation variables such as Pt and CeO_2 loading,ceria deposition method,drying and calcination conditions for the ceria and Pt precursors were optimized experimentally.The activity was correlated with surface properties using CO/H_2 chemisorption,O_2-H_2 titration,X-ray diffraction and BET surface area analysis.The method of CeO_2 deposition had a significant impact on the catalytic activity.CeO_2 deposition by impregnation resulted in a catalyst that was three times more active than that prepared by deposition precipitation or CeO_2grafting.O_2-H_2 titration results revealed that the close association of ceria and Pt in the case of CeO_2deposition by impregnation resulted in higher activity.The catalyst support used was also crucial as a silica supported catalyst was five times more active than an alumina supported catalyst.The particle size and pore structure of the catalyst support were also crucial as the reaction was diffusion controlled.The drying and calcination conditions of the ceria and Pt precursors also played a crucial role in determining the catalytic activity.The Pt-CeO_2/SiO_2 catalysts with Pt 2.5 wt%and CeO_2 15 wt%were highly active(TOF 0.02 s^(-1)) and stable(conversion 99%after 15 h) at ambient conditions.展开更多
文摘With the increasing concerns to energy shortage and environmental problems in modern society,the development of cheap,clean,and sustainable energy alternatives has been attracting tremendous attention globally.Among various strategies of renewable energy exploration,solar-driven water splitting into its compositional elements H2 and O2 is an ideal approach to convert and store renewable solar energy into chemical bonds.In recent few decades,as an emerging new type of catalysts,polyoxometalates(POMs)have been widely utilized for water splitting due to their versatile synthetic methodology and highly tunable physicochemical and photochemical properties.This critical review addresses the research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts,including plenary POMs,transition-metal-substituted POMs,POM@MOF composites,and POM-semiconductor hybrids,under UV,near UV and visible light irradiation.In addition,the catalytic mechanism for each reaction system has been thoroughly discussed and summarized.Finally,a comprehensive outlook of this research area is also prospected.
基金supported by US Army contract(W56HZV-05-C0686) at Auburn University administered through TARDEC
文摘CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature.Furthermore,the presence of moisture would cause passivation of the catalyst A highly active ceria promoted Pt catalyst(4%Pt-12%CeO_2/SiO_2;conversion≥99%at low( 500 ppm) and high( 2500 ppm) CO concentrations was developed for CO oxidation at ambient temperature in humid air.Catalyst preparation variables such as Pt and CeO_2 loading,ceria deposition method,drying and calcination conditions for the ceria and Pt precursors were optimized experimentally.The activity was correlated with surface properties using CO/H_2 chemisorption,O_2-H_2 titration,X-ray diffraction and BET surface area analysis.The method of CeO_2 deposition had a significant impact on the catalytic activity.CeO_2 deposition by impregnation resulted in a catalyst that was three times more active than that prepared by deposition precipitation or CeO_2grafting.O_2-H_2 titration results revealed that the close association of ceria and Pt in the case of CeO_2deposition by impregnation resulted in higher activity.The catalyst support used was also crucial as a silica supported catalyst was five times more active than an alumina supported catalyst.The particle size and pore structure of the catalyst support were also crucial as the reaction was diffusion controlled.The drying and calcination conditions of the ceria and Pt precursors also played a crucial role in determining the catalytic activity.The Pt-CeO_2/SiO_2 catalysts with Pt 2.5 wt%and CeO_2 15 wt%were highly active(TOF 0.02 s^(-1)) and stable(conversion 99%after 15 h) at ambient conditions.