To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to av...To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to avoid collector sinking. The supporting mechanism is a streamlined body with large and smooth supporting area. The grounding pressure is reduced to 0.5- 1 N/cm2 to make sure that the sinkage is limited. The impellers serve as the driving mechanism to supply enough driving power. The position between the supporting mechanism and the driving mechanism can be adjusted according to the operating condition to decrease the walking resistance and to increase driving efficiency. The test results indicate that the collector can walk on the surface of the soft sediments with the limited sinkage. The traction forces were up to 800 kg and the sinkage of the impeller was under the limitation.展开更多
This paper describes design and calibration procedures of a new small-scale testing apparatus for evaluating soil-structure interaction. Two distinct modes of loadings, such as, direct shear and pullout loadings on fl...This paper describes design and calibration procedures of a new small-scale testing apparatus for evaluating soil-structure interaction. Two distinct modes of loadings, such as, direct shear and pullout loadings on flexible and rigid reinforcements are implemented by the multiple functionalities of the apparatus through the use of single loading frame, dividing mechanism, instrumentation and data acquisition systems. The design is similar to the conventional apparatus; however, it includes some key modifications to adapt additional features of reinforcements. For the pullout test, the top half of the pullout box is fixed with the bottom half of the pullout box, while for the direct shear test, the top half is allowed to slide horizontally on low friction roller bearings connected to the driving mechanism. Mechanical loadings through a steel plate are used to apply the normal load in the pullout and direct shear apparatus. A series of shear and pullout tests are performed to validate the functionality of the apparatus and to examine relationships between the reinforcements and its shear and pullout resistances.展开更多
Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramat...Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc., has been introduced.展开更多
基金Project(2012AA091201) supported by the National High Technology Research and Development Program of China
文摘To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to avoid collector sinking. The supporting mechanism is a streamlined body with large and smooth supporting area. The grounding pressure is reduced to 0.5- 1 N/cm2 to make sure that the sinkage is limited. The impellers serve as the driving mechanism to supply enough driving power. The position between the supporting mechanism and the driving mechanism can be adjusted according to the operating condition to decrease the walking resistance and to increase driving efficiency. The test results indicate that the collector can walk on the surface of the soft sediments with the limited sinkage. The traction forces were up to 800 kg and the sinkage of the impeller was under the limitation.
文摘This paper describes design and calibration procedures of a new small-scale testing apparatus for evaluating soil-structure interaction. Two distinct modes of loadings, such as, direct shear and pullout loadings on flexible and rigid reinforcements are implemented by the multiple functionalities of the apparatus through the use of single loading frame, dividing mechanism, instrumentation and data acquisition systems. The design is similar to the conventional apparatus; however, it includes some key modifications to adapt additional features of reinforcements. For the pullout test, the top half of the pullout box is fixed with the bottom half of the pullout box, while for the direct shear test, the top half is allowed to slide horizontally on low friction roller bearings connected to the driving mechanism. Mechanical loadings through a steel plate are used to apply the normal load in the pullout and direct shear apparatus. A series of shear and pullout tests are performed to validate the functionality of the apparatus and to examine relationships between the reinforcements and its shear and pullout resistances.
基金National Natural Science Foundation of China ( No. 50976046)
文摘Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system, which includes Rankine cycle based power wheel cycle unit etc., has been introduced.