In order to reflect the influence of the drivers' characteristic differences on intersection capacity under a mixed traffic flow, a driver correction coefficient for the intersection capacity calculation according to...In order to reflect the influence of the drivers' characteristic differences on intersection capacity under a mixed traffic flow, a driver correction coefficient for the intersection capacity calculation according to the driver's visual characteristics is proposed. First, the parameters of the driver's visual characteristics at some real roads, including gaze fixation distribution, mean fixation duration, visual angle distribution and some other parameters at intersections, are collected. Then, the relationship between the traffic flow rate at intersections and the parameters of driver eye movements are established. The analytical results indicate that when the traffic flow is unsaturated, the parameters of driver eye movements change relatively little; however, when the traffic flow is saturated, the parameters of driver eye movements change drastically. Finally, the saturation-flow-rate model is modified according to the parameters of driver eye movements; thus, a capacity model of intersections considering the driver's visual characteristics is obtained.展开更多
Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring...Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization.The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation,the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner.The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions.展开更多
This investigation was to evaluate the driving fatigue based on power spectral analysis of heart rate variability (HRV) under vertical vibration. Forty healthy male subjects (29.7±3.5 years) were randomly divided...This investigation was to evaluate the driving fatigue based on power spectral analysis of heart rate variability (HRV) under vertical vibration. Forty healthy male subjects (29.7±3.5 years) were randomly divided into two groups, Group A (28.8±4.3 years) and Group B (30.6±2.7 years). Group A (experiment group) was required to perform the simulated driving and Group B (control group) kept calm for 90 min. The frequency domain indices of HRV such as low frequency (0.04 0.15 Hz, LF), high frequency (0.150.4 Hz, HF), LF/HF together with the indices of hemodynamics such as blood pressure (BP) and heart rate (HR) of the subjects between both groups were calculated and analyzed after the simulated driving. There were significances of the former indices between both groups (P<0.05). All the data collected after experiment of Group A was observed the remarkable linear correlation (P<0.05) and parameters and errors of their linear regression equation were stated (α=0.05, P<0.001) in this paper, respectively. The present study investigated that sympathetic activity of the subjects enhanced after the simulated driving while parasympathetic activities decreased. The sympathovagal balance was also improved. As autonomic function indictors of HRV reflected fatigue level, quantitative evaluation of driving mental fatigue from physiological reaction could be possible.展开更多
An EMU train with detailed cabin structural is established based on the finite element method.The secondary impact between train driver and control desk is fully analysed and two measures are proposed to reduce the dr...An EMU train with detailed cabin structural is established based on the finite element method.The secondary impact between train driver and control desk is fully analysed and two measures are proposed to reduce the driver injury severity,such as the multi-objective optimization of the driver seat position and equipping the train with three-point seat belt.Simulation results indicate that the driver seat position has a significant effect on the driver injury severity during a secondary impact.According to the multi-objective optimization,some Pareto solutions are suggested to design the driver seat position.Besides that,it is also indicated although the chest and leg are well protected when the driver wears a two-point seat belt,it increases the head injure during a secondary impact.On the other hand,the three-point seat belt can supply the train driver with an overall protection against the secondary impact.The injury criteria(HIC,VC,TI)of the driver with the three-point seat belt is significantly lower than those of the driver without seat belt.Moreover,according to the simulation analysis,the limited load of the three-point seat belt is suggested about 1.5 kN.展开更多
The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles befo...The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance.Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively;the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety,but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.展开更多
The aim of the publication is to present the results of the research with the documents research method, involving studies of literature, legislation, and source acts on development of the system supporting the psycho...The aim of the publication is to present the results of the research with the documents research method, involving studies of literature, legislation, and source acts on development of the system supporting the psychological tests (psychological tests battery) of the police drivers, including the privileged drivers of the police. The system, in its assumptions, should inter alia allow to make assessment of intellectual and psychomotor skills as well as personality (in accordance with the detailed guidelines of annex 6 to Regulation of the Minister of Health of 8 ]uly 2014 on the psychological tests of the vehicles drivers using the tools of proven accuracy, reliability above .7, objective, standardised, and normalised within a group of police drivers). The described research is conducted based on the grant for realisation of the development project: "Development of Psychological Tests Supporting System of the Drivers for the Police", no. DOB-BIO7/20/01/2015. The method for the research of the documents in the form of indirect observation allowed to analyse the legal acts, both national and international, and the laws in force in the European Union.展开更多
The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoid...The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoiding the collision with pedestrians was proposed. In this study, the subject drivers started braking at almost the same time in terms of TTC (Time to Collision), regardless of the velocity of a subject vehicle and crossing velocity of pedestrians. This experimental result showed that brake timing of the system which can minimize the interference for braking between drivers and the system is 1.3 s of TTC. Next, the drivers' braking behavior was investigated when the system controlled braking to avoid collision at this timing. As a result, drivers did not show any change of braking behavior with no excessive interference between braking control by the system and braking operation by drivers for avoiding collisions with pedestrians which is equivalent to the excessive dependence on the system.展开更多
The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the d...The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the driver's pedaling is introduced. The vehicle has a battery to store the energy provided by both systems. The development was motivated by a Latin American solar car race through the Atacama Desert in Chile and the initiative to promote the use of clean energy for transport. A general description of the vehicle, its energetic aspects and experimental results are presented.展开更多
In order to make maximum use of the EV (electric vehicle) battery, evaluating the remaining battery capacity and the power consumption is important. Evaluation method of the remaining battery capacity with accuracy ...In order to make maximum use of the EV (electric vehicle) battery, evaluating the remaining battery capacity and the power consumption is important. Evaluation method of the remaining battery capacity with accuracy has been proposed. Moreover, the evaluation method of the power consumption for traveling has been proposed. However, the power consumption for vehicle-mounted air-conditioner is 30%. It is necessary to calculate the power consumption for both traveling and air-conditioning. In this paper, the authors have constructed a mathematical model which calculates the EV power consumption for both traveling and air-conditioning. The calculated results of this model have been compared to actual traveling data. In addition, factors which have a impact on the EV power consumption have been studied. As a result, the EV power consumption is greately varied by slope resistance, acceleration resistance and required air-conditioning load. Moreover, it is clarified that the air-conditioner consumes approximately 25% to 50% of the total power consumption in a hot summer day. In addition, the acceleration and the air-conditioning load differ depending on each vehicle driver. Therefore, in order to evaluate the EV power consumption practically, it is necessary to reflect the characteristics of each vehicle driver.展开更多
In this paper, the structured trajectory planning of lane change in collision-free road environment is studied and validated using the vehicle-driver integration data, and a new trajectory planning model for lane chan...In this paper, the structured trajectory planning of lane change in collision-free road environment is studied and validated using the vehicle-driver integration data, and a new trajectory planning model for lane change is proposed based on linear offset and sine function to balance driver comfort and vehicle dynamics. The trajectory curvature of the proposed model is continuous without mutation, and the zero-based curvature at the starting and end points during lane change assures the motion direction of end points in parallel with the lane line. The field experiment are designed to collect the vehicle-driver integration data, such as steering angle, brake pedal angel and accelerator pedal angel. The correction Correlation analysis of lane-changing maneuver and influencing variables is conducted to obtain the significant variables that can be used to calibrate and test the proposed model. The results demonstrate that vehicle velocity and Y-axis acceleration have significant effects on the lane-changing maneuver, so that the model recalibrated by the samples of different velocity ranges and Y-axis accelerations has better fitted performance compared with the model calibrated by the sample trajectory. In addition, the proposed model presents a decreasing tendency of the lane change trajectory fitted MAE with the increase of time span of calibrating samples at the starting stage.展开更多
Purpose: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. Methods: First a minibus FE model was inte...Purpose: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. Methods: First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. Results: In the minibus rear-end truck collision, the peak values of the yon Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. Conclusion: The results illustrate that a longer dashboard incursion distance corresponds to a higher yon Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb iniuries to the driver in minibus frontal collisions.展开更多
In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anti...In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anticipation effect of next-nearest-neighbor site can enlarge the stable area of traffic flow. The space can be divided into three regions: stab/e, metastable, and unstable. Numerical simulation further illuminates that the driver anticipation effect of the next-neaxest-neighbor site can stabilize tramc flow in our modified lattice model, which is consistent with the analytical results.展开更多
基金The National Natural Science Foundation of China (No.50708019)Huo Yingdong Education Foundation(No.104010)Jiangsu Qing Lan Project
文摘In order to reflect the influence of the drivers' characteristic differences on intersection capacity under a mixed traffic flow, a driver correction coefficient for the intersection capacity calculation according to the driver's visual characteristics is proposed. First, the parameters of the driver's visual characteristics at some real roads, including gaze fixation distribution, mean fixation duration, visual angle distribution and some other parameters at intersections, are collected. Then, the relationship between the traffic flow rate at intersections and the parameters of driver eye movements are established. The analytical results indicate that when the traffic flow is unsaturated, the parameters of driver eye movements change relatively little; however, when the traffic flow is saturated, the parameters of driver eye movements change drastically. Finally, the saturation-flow-rate model is modified according to the parameters of driver eye movements; thus, a capacity model of intersections considering the driver's visual characteristics is obtained.
基金supported by the National Nature Science Foundation of China(61520106008,61790563,U1664263)
文摘Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization.The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation,the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner.The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions.
文摘This investigation was to evaluate the driving fatigue based on power spectral analysis of heart rate variability (HRV) under vertical vibration. Forty healthy male subjects (29.7±3.5 years) were randomly divided into two groups, Group A (28.8±4.3 years) and Group B (30.6±2.7 years). Group A (experiment group) was required to perform the simulated driving and Group B (control group) kept calm for 90 min. The frequency domain indices of HRV such as low frequency (0.04 0.15 Hz, LF), high frequency (0.150.4 Hz, HF), LF/HF together with the indices of hemodynamics such as blood pressure (BP) and heart rate (HR) of the subjects between both groups were calculated and analyzed after the simulated driving. There were significances of the former indices between both groups (P<0.05). All the data collected after experiment of Group A was observed the remarkable linear correlation (P<0.05) and parameters and errors of their linear regression equation were stated (α=0.05, P<0.001) in this paper, respectively. The present study investigated that sympathetic activity of the subjects enhanced after the simulated driving while parasympathetic activities decreased. The sympathovagal balance was also improved. As autonomic function indictors of HRV reflected fatigue level, quantitative evaluation of driving mental fatigue from physiological reaction could be possible.
基金Project(51805374) supported by the National Natural Science Foundation of ChinaProject(22120180531) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16PJ1409500) supported by the Shanghai Pujiang Program,China
文摘An EMU train with detailed cabin structural is established based on the finite element method.The secondary impact between train driver and control desk is fully analysed and two measures are proposed to reduce the driver injury severity,such as the multi-objective optimization of the driver seat position and equipping the train with three-point seat belt.Simulation results indicate that the driver seat position has a significant effect on the driver injury severity during a secondary impact.According to the multi-objective optimization,some Pareto solutions are suggested to design the driver seat position.Besides that,it is also indicated although the chest and leg are well protected when the driver wears a two-point seat belt,it increases the head injure during a secondary impact.On the other hand,the three-point seat belt can supply the train driver with an overall protection against the secondary impact.The injury criteria(HIC,VC,TI)of the driver with the three-point seat belt is significantly lower than those of the driver without seat belt.Moreover,according to the simulation analysis,the limited load of the three-point seat belt is suggested about 1.5 kN.
基金Project(51208451)supported by the National Natural Science Foundation of ChinaProject(10KJB580004)supported by the Natural Science Foundation for Colleges and Universities of Jiangsu Province,ChinaProject supported by the New Century Talents Project of Yangzhou University,China
文摘The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance.Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively;the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety,but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.
文摘The aim of the publication is to present the results of the research with the documents research method, involving studies of literature, legislation, and source acts on development of the system supporting the psychological tests (psychological tests battery) of the police drivers, including the privileged drivers of the police. The system, in its assumptions, should inter alia allow to make assessment of intellectual and psychomotor skills as well as personality (in accordance with the detailed guidelines of annex 6 to Regulation of the Minister of Health of 8 ]uly 2014 on the psychological tests of the vehicles drivers using the tools of proven accuracy, reliability above .7, objective, standardised, and normalised within a group of police drivers). The described research is conducted based on the grant for realisation of the development project: "Development of Psychological Tests Supporting System of the Drivers for the Police", no. DOB-BIO7/20/01/2015. The method for the research of the documents in the form of indirect observation allowed to analyse the legal acts, both national and international, and the laws in force in the European Union.
文摘The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoiding the collision with pedestrians was proposed. In this study, the subject drivers started braking at almost the same time in terms of TTC (Time to Collision), regardless of the velocity of a subject vehicle and crossing velocity of pedestrians. This experimental result showed that brake timing of the system which can minimize the interference for braking between drivers and the system is 1.3 s of TTC. Next, the drivers' braking behavior was investigated when the system controlled braking to avoid collision at this timing. As a result, drivers did not show any change of braking behavior with no excessive interference between braking control by the system and braking operation by drivers for avoiding collisions with pedestrians which is equivalent to the excessive dependence on the system.
文摘The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the driver's pedaling is introduced. The vehicle has a battery to store the energy provided by both systems. The development was motivated by a Latin American solar car race through the Atacama Desert in Chile and the initiative to promote the use of clean energy for transport. A general description of the vehicle, its energetic aspects and experimental results are presented.
文摘In order to make maximum use of the EV (electric vehicle) battery, evaluating the remaining battery capacity and the power consumption is important. Evaluation method of the remaining battery capacity with accuracy has been proposed. Moreover, the evaluation method of the power consumption for traveling has been proposed. However, the power consumption for vehicle-mounted air-conditioner is 30%. It is necessary to calculate the power consumption for both traveling and air-conditioning. In this paper, the authors have constructed a mathematical model which calculates the EV power consumption for both traveling and air-conditioning. The calculated results of this model have been compared to actual traveling data. In addition, factors which have a impact on the EV power consumption have been studied. As a result, the EV power consumption is greately varied by slope resistance, acceleration resistance and required air-conditioning load. Moreover, it is clarified that the air-conditioner consumes approximately 25% to 50% of the total power consumption in a hot summer day. In addition, the acceleration and the air-conditioning load differ depending on each vehicle driver. Therefore, in order to evaluate the EV power consumption practically, it is necessary to reflect the characteristics of each vehicle driver.
基金supported by the National Natural Science Foundation of China(Grant No.61473028)the National Basic Research Program of China("973" Program)(Grant No.2012CB725403)the National High Technology Research and Development Program of China("863" Program)(Grant No.2015AA124103)
文摘In this paper, the structured trajectory planning of lane change in collision-free road environment is studied and validated using the vehicle-driver integration data, and a new trajectory planning model for lane change is proposed based on linear offset and sine function to balance driver comfort and vehicle dynamics. The trajectory curvature of the proposed model is continuous without mutation, and the zero-based curvature at the starting and end points during lane change assures the motion direction of end points in parallel with the lane line. The field experiment are designed to collect the vehicle-driver integration data, such as steering angle, brake pedal angel and accelerator pedal angel. The correction Correlation analysis of lane-changing maneuver and influencing variables is conducted to obtain the significant variables that can be used to calibrate and test the proposed model. The results demonstrate that vehicle velocity and Y-axis acceleration have significant effects on the lane-changing maneuver, so that the model recalibrated by the samples of different velocity ranges and Y-axis accelerations has better fitted performance compared with the model calibrated by the sample trajectory. In addition, the proposed model presents a decreasing tendency of the lane change trajectory fitted MAE with the increase of time span of calibrating samples at the starting stage.
文摘Purpose: This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. Methods: First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. Results: In the minibus rear-end truck collision, the peak values of the yon Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. Conclusion: The results illustrate that a longer dashboard incursion distance corresponds to a higher yon Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb iniuries to the driver in minibus frontal collisions.
基金Supported by the Key Project of Chinese Ministry of Education under Grant No.211123the Scientific Research Fund of Hunan Provincial Education Department under Grant No.10B072+2 种基金Doctor Scientific Research Startup Project Foundation of Hunan University of Arts and Science under Grant No.BSQD1010the Fund of Key Construction Academic Subject of Hunan Provincethe Natural Science Foundation of Hunan Province under Grant No.14JJ2125
文摘In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation effect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anticipation effect of next-nearest-neighbor site can enlarge the stable area of traffic flow. The space can be divided into three regions: stab/e, metastable, and unstable. Numerical simulation further illuminates that the driver anticipation effect of the next-neaxest-neighbor site can stabilize tramc flow in our modified lattice model, which is consistent with the analytical results.