The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Euca-lyptus urophylla E. grandis, Eucalyptus urophylla E. tereticornis, Eucalyptus urophylla E. camaldulensis ...The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Euca-lyptus urophylla E. grandis, Eucalyptus urophylla E. tereticornis, Eucalyptus urophylla E. camaldulensis and Eucalyptus cloeziana) that were collected from plantation in Dongmen Forestry Center of Guangxi Province, China were tested with stand-ing wave method and their sound absorption properties were also compared. The results showed that the sound absorption co-efficients of the five eucalypt wood species did not change evidently below 1000 Hz, but above 1000 Hz their sound absorption coefficients increased with the increasing frequency. The difference in sound absorption coefficient among five species of eucalypt wood is not evident at the tested frequency range (200-2000 Hz), but the sound absorption property of Eucalyptus urophylla at low frequency is better than that of other four species. The sound absorption coefficient of the tangential-sawn board is higher than that of the radial-sawn board. The sound absorption property of eucalypt wood of 0.5 cm in thickness is much better than that of 1.0 cm in thickness. It is concluded that wood sound absorption properties of eucalypts are affected by their board thickness and the type of sawn timber within the testing frequency, but the variance of wood sound absorption property among the five tested species is not significant.展开更多
According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam e...According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam element, a finite element program for computing thin-walled box steel beams is developed. And the program can take the section distortion and warping effects into account. The influences of diaphragm spacing on the mechanical behavior of thin-walled box beams are analyzed by the program. The numerical analysis shows that setting diaphragms have the greatest influence on the distortion normal stress, while there is very little influence on the bending normal stress. Only when the distance of adjacent diaphragms decreases to a certain value, will the distortion normal stress in the thin-walled box beam obviously reduce under the distortion load. Finally, a distortion-warping coefficient γ is introduced for simplifying the calculation of the longitudinal normal stress of thin-walled box beams. When the ratio of diaphragms adjacent space L to the maximum section dimension H is less than 2, the distortion-warping coefficient γ tends to one, which means that the distortion normal stress of the thin-walled box beam tends to zero, and the effect of the section distortion can be ignored.展开更多
It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of...It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of standing waves for ultrasonic purification of magnesium alloy melt,numerical simulation and relevant experiment were carried out.The numerical simulation was broken into two main aspects.On one hand,the ultrasonic field propagations within the cells with various shapes were characterized by numerical solutions of the wave equation and with a careful choice of geometry a nearly idealized standing wave field was finally obtained.On the other hand,within such a standing wave field the agglomeration behavior of oxidation inclusions in magnesium alloy melt was analyzed and discussed.The agglomeration time and agglomeration position of oxidation inclusions were predicted with numerical simulation method.The results show that the oxidation inclusions whose apparent densities are close to the density of the melt can agglomerate at wave nodes in a short time which to a great extent enhances and accelerates the separation of oxidation inclusions from magnesium alloy melt.展开更多
文摘The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Euca-lyptus urophylla E. grandis, Eucalyptus urophylla E. tereticornis, Eucalyptus urophylla E. camaldulensis and Eucalyptus cloeziana) that were collected from plantation in Dongmen Forestry Center of Guangxi Province, China were tested with stand-ing wave method and their sound absorption properties were also compared. The results showed that the sound absorption co-efficients of the five eucalypt wood species did not change evidently below 1000 Hz, but above 1000 Hz their sound absorption coefficients increased with the increasing frequency. The difference in sound absorption coefficient among five species of eucalypt wood is not evident at the tested frequency range (200-2000 Hz), but the sound absorption property of Eucalyptus urophylla at low frequency is better than that of other four species. The sound absorption coefficient of the tangential-sawn board is higher than that of the radial-sawn board. The sound absorption property of eucalypt wood of 0.5 cm in thickness is much better than that of 1.0 cm in thickness. It is concluded that wood sound absorption properties of eucalypts are affected by their board thickness and the type of sawn timber within the testing frequency, but the variance of wood sound absorption property among the five tested species is not significant.
基金Specialized Research Fund for the Doctoral Program of Higher Education (No.20070247002)
文摘According to the stationary principle of potential energy and the generalized coordinate method, a stiffness matrix of a beam element considering distortion effects is derived. Using the stiffness matrix of the beam element, a finite element program for computing thin-walled box steel beams is developed. And the program can take the section distortion and warping effects into account. The influences of diaphragm spacing on the mechanical behavior of thin-walled box beams are analyzed by the program. The numerical analysis shows that setting diaphragms have the greatest influence on the distortion normal stress, while there is very little influence on the bending normal stress. Only when the distance of adjacent diaphragms decreases to a certain value, will the distortion normal stress in the thin-walled box beam obviously reduce under the distortion load. Finally, a distortion-warping coefficient γ is introduced for simplifying the calculation of the longitudinal normal stress of thin-walled box beams. When the ratio of diaphragms adjacent space L to the maximum section dimension H is less than 2, the distortion-warping coefficient γ tends to one, which means that the distortion normal stress of the thin-walled box beam tends to zero, and the effect of the section distortion can be ignored.
基金Projects(2007CB613701,2007CB613702)supported by the National Basic Research Program of ChinaProjects(50974037,50904018)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0098)supported by the Program for New Century Excellent Talents in University of China
文摘It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of standing waves for ultrasonic purification of magnesium alloy melt,numerical simulation and relevant experiment were carried out.The numerical simulation was broken into two main aspects.On one hand,the ultrasonic field propagations within the cells with various shapes were characterized by numerical solutions of the wave equation and with a careful choice of geometry a nearly idealized standing wave field was finally obtained.On the other hand,within such a standing wave field the agglomeration behavior of oxidation inclusions in magnesium alloy melt was analyzed and discussed.The agglomeration time and agglomeration position of oxidation inclusions were predicted with numerical simulation method.The results show that the oxidation inclusions whose apparent densities are close to the density of the melt can agglomerate at wave nodes in a short time which to a great extent enhances and accelerates the separation of oxidation inclusions from magnesium alloy melt.