期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于随机森林的驾驶人驾驶习性辨识策略 被引量:14
1
作者 朱冰 李伟男 +3 位作者 汪震 赵健 何睿 韩嘉懿 《汽车工程》 EI CSCD 北大核心 2019年第2期213-218,224,共7页
深入理解驾驶人驾驶习性及其表征方法,对于实现在汽车自动驾驶、辅助驾驶等不同控制系统下的人机和谐交互具有重要意义。为此,本文中提出了一种基于随机森林模型的驾驶人驾驶习性辨识策略。搭建了驾驶人驾驶数据实车采集系统,在典型跟... 深入理解驾驶人驾驶习性及其表征方法,对于实现在汽车自动驾驶、辅助驾驶等不同控制系统下的人机和谐交互具有重要意义。为此,本文中提出了一种基于随机森林模型的驾驶人驾驶习性辨识策略。搭建了驾驶人驾驶数据实车采集系统,在典型跟车驾驶工况下对驾驶人驾驶习性数据进行了实时采集;根据层次聚类理论,对驾驶人驾驶习性进行了标定;在此基础上,引入随机森林模型建立了驾驶人驾驶习性辨识策略,并进行了重要性分析、模型训练和测试分析。测试结果表明,本文提出的基于随机森林模型的驾驶人驾驶习性辨识策略能有效辨识驾驶人驾驶习性,模型整体精准度可达97.1%。 展开更多
关键词 车辆工程 驾驶习性辨识 随机森林 层次聚类 跟车工况
下载PDF
考虑驾驶人驾驶习性的自适应车道偏离预警策略 被引量:8
2
作者 朱冰 李伟男 +1 位作者 赵健 韩嘉懿 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第S01期171-177,共7页
提出了考虑驾驶人驾驶习性的自适应车道偏离预警策略.通过实车驾驶数据采集平台采集驾驶人的驾驶行为数据,并基于模糊聚类对驾驶数据进行聚类处理,进而利用广义回归神经网络(GRNN)模型实现了驾驶人驾驶习性辨识策略;建立车道偏离时间估... 提出了考虑驾驶人驾驶习性的自适应车道偏离预警策略.通过实车驾驶数据采集平台采集驾驶人的驾驶行为数据,并基于模糊聚类对驾驶数据进行聚类处理,进而利用广义回归神经网络(GRNN)模型实现了驾驶人驾驶习性辨识策略;建立车道偏离时间估算模型,设计个性化的车道偏离预警系统;最后,通过驾驶模拟器进行测试验证.结果表明,所提出的考虑驾驶人驾驶习性的自适应车道偏离预警策略能够在有效辨识驾驶人驾驶习性的基础上,提高车道偏离预警的适用性. 展开更多
关键词 驾驶习性 模糊聚类 广义回归神经网络(GRNN) 车道偏离预警
下载PDF
基于KL散度的驾驶员驾驶习性非监督聚类 被引量:6
3
作者 朱冰 蒋渊德 +3 位作者 邓伟文 杨顺 何睿 苏琛 《汽车工程》 EI CSCD 北大核心 2018年第11期1317-1323,共7页
为深入理解不同驾驶员的驾驶行为特点,本文中提出了一种基于KL散度的驾驶员驾驶习性非监督聚类算法。首先,建立了驾驶员驾驶数据实车道路试验采集平台,对84位驾驶员进行了测试;接着,将每名驾驶员的驾驶数据视为一个高斯混合模型(GMM),采... 为深入理解不同驾驶员的驾驶行为特点,本文中提出了一种基于KL散度的驾驶员驾驶习性非监督聚类算法。首先,建立了驾驶员驾驶数据实车道路试验采集平台,对84位驾驶员进行了测试;接着,将每名驾驶员的驾驶数据视为一个高斯混合模型(GMM),采取EM算法对其进行参数估计;最后,通过蒙特卡洛算法对各GMM之间的KL散度进行估计,从而获得不同驾驶员差异性的定量描述,将驾驶员聚为不同习性类别。对聚类后各类驾驶员的驾驶数据的统计分析表明,所提出的非监督聚类算法能有效实现不同驾驶习性驾驶员的聚类。 展开更多
关键词 驾驶习性 聚类 KL散度 高斯混合模型 蒙特卡洛算法
下载PDF
基于纵向激励的驾驶习性分类及辨识方法
4
作者 孙博华 邓伟文 +3 位作者 何睿 吴坚 李雅欣 边宁 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第11期33-43,共11页
为使先进驾驶人辅助系统更具人性化及个性化,提高智能车辆的驾乘安全性和舒适性,提出一种基于纵向激励工况的驾驶习性分类及辨识方法.以前车车速信号的周期性及突变性为依据,设计6种前车典型纵向激励工况,并通过实车道路试验完成64位驾... 为使先进驾驶人辅助系统更具人性化及个性化,提高智能车辆的驾乘安全性和舒适性,提出一种基于纵向激励工况的驾驶习性分类及辨识方法.以前车车速信号的周期性及突变性为依据,设计6种前车典型纵向激励工况,并通过实车道路试验完成64位驾驶人的数据采集.然后,采用客观粒子群聚类和主观量表分析相结合的分类方式,实现典型驾驶习性的分类和习性类型的定义.比较各工况下的分类结果,确定纵向最优激励工况组为正弦工况3和阶跃工况3.建立基于多维高斯隐马尔科夫过程的驾驶习性辨识模型,依据辨识准确率得到最优模型输入信号组,利用正交试验法优化模型中的关键参数.结果表明,基于纵向激励的驾驶习性分类及辨识方法能够得到更好的分类和辨识准确率. 展开更多
关键词 车辆工程 驾驶习性 粒子群聚类 多维高斯隐马尔科夫过程 先进驾驶人辅助系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部