期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
自适应自动驾驶等级的驾驶人状态监测模型研究 被引量:1
1
作者 黄晶 陈紫琳 +1 位作者 杨梦婷 彭晓燕 《机械工程学报》 EI CAS CSCD 北大核心 2023年第2期187-198,共12页
自动驾驶等级的逐级提升意味着驾驶执行权从驾驶人向车辆自动控制系统逐渐转移,驾驶人所承担的责任也随之发生变化。大量研究表明,自动驾驶车辆驾驶人的注意力跨度与行驶安全性密切相关,且不同等级自动驾驶所要求的驾驶人状态阈值存在... 自动驾驶等级的逐级提升意味着驾驶执行权从驾驶人向车辆自动控制系统逐渐转移,驾驶人所承担的责任也随之发生变化。大量研究表明,自动驾驶车辆驾驶人的注意力跨度与行驶安全性密切相关,且不同等级自动驾驶所要求的驾驶人状态阈值存在差异。提出一种融合长短记忆(Long short term memory,LSTM)网络和驾驶人状态判别机制的驾驶人负荷状态预测模型(long short term memory network driver state prediction model,LSTM-DSDM),实现驾驶人负荷状态的预测及其状态转变阶段的识别,并基于不同自动驾驶等级下驾驶人的任务要求,提出了“低等级识别,高等级预测”的驾驶人负荷状态监测策略。试验结果表明本研究搭建的驾驶员负荷状态预测模型在低自动驾驶等级情况下的负荷识别率可达90%以上;在高自动驾驶等级情况下实现可靠的负荷预测和驾驶人负荷状态过渡阶段的辨识,有效应对不同自动驾驶等级驾驶人负荷状态的监测需求。 展开更多
关键词 自动驾驶等级 驾驶人能力需求 驾驶人状态监测 负荷过渡 LSTM
原文传递
表情变换时序特征下的驾驶人情绪识别研究
2
作者 董红召 林少轩 佘翊妮 《中国公路学报》 EI CAS CSCD 北大核心 2024年第5期343-355,共13页
针对现有驾驶人情绪识别方法存在的识别实时性不足、识别精度较低等问题,提出一种表情识别及其时序情绪表达的驾驶人情绪识别方法。首先,建立VGG Lite驾驶人表情识别模型,在传统VGG Net模型结构上,通过改变卷积层堆叠结构以大幅减少模... 针对现有驾驶人情绪识别方法存在的识别实时性不足、识别精度较低等问题,提出一种表情识别及其时序情绪表达的驾驶人情绪识别方法。首先,建立VGG Lite驾驶人表情识别模型,在传统VGG Net模型结构上,通过改变卷积层堆叠结构以大幅减少模型的参数量,修改激活函数以增强模型对人脸表情中细节特征的表达能力,并在模型中增加性能优化层来提升模型的收敛性和泛化性。其次,分析表情时序变化与情绪状态之间的关系,研究时间序列演变的情绪表达方式,设计了包含表情时序转化、表情-情绪量化映射和时序情绪表达的驾驶人时序情绪识别方法。然后,采用Fer2013数据集,将所提出的VGG Lite驾驶人表情识别模型与其他模型进行比较验证,证明了该模型不仅可以保持高识别准确率,还有效降低了模型参数量,从而提高了识别速度,此外,采用自制数据集识别表情获得了98.8%的高准确率,证明了该模型能有效识别不同驾驶情境中的驾驶人表情。最后,以公交车驾驶人情绪识别为例对提出的时序情绪识别方法进行试验验证,结果表明,该方法能够准确识别驾驶人各种表情转换下的复杂情绪状态,平均识别率高于95%,比单帧情绪识别方法提升5%以上,每帧图像的情绪识别耗时平均低于0.03 s,每秒平均识别超过10帧,满足交通驾驶情绪识别的实时性要求。所提方法能够及时、准确地评估驾驶人的情绪状态,为提高交通系统整体安全性和效率提供了更有效的手段。 展开更多
关键词 交通工程 驾驶情绪 时序情绪识别 驾驶人情绪状态 驾驶安全
原文传递
基于握力分布的驾驶人人机共驾状态识别研究 被引量:4
3
作者 韩嘉懿 朱冰 +1 位作者 赵健 马驰 《中国公路学报》 EI CAS CSCD 北大核心 2022年第3期166-176,共11页
人机共驾是现阶段汽车智能化发展的必经之路,在人机共驾中为了避免人机冲突,对驾驶人的人机共驾状态进行识别是实现和谐人机共驾的基础。然而现有研究较少考虑了该状态,同时相关识别方法多基于驾驶人生理信息,导致应用繁琐,不具备实用... 人机共驾是现阶段汽车智能化发展的必经之路,在人机共驾中为了避免人机冲突,对驾驶人的人机共驾状态进行识别是实现和谐人机共驾的基础。然而现有研究较少考虑了该状态,同时相关识别方法多基于驾驶人生理信息,导致应用繁琐,不具备实用性。为此,设计了一种能够测量握力分布的智能方向盘系统硬件架构,并在此基础上开发了基于握力分布的驾驶人人机共驾状态识别方法。首先搭建了能够测量驾驶人双手握力分布的智能方向盘系统,在此基础上利用驾驶人在环试验台采集了15名驾驶人在不同人机共驾状态下的试验数据;然后根据试验数据通过递推最小二乘法对驾驶人的上肢肌肉阻抗特性参数进行了辨识,分析了不同状态下的驾驶人上肢肌肉特性;最后基于门控循环单元(Gated Recurrent Unit,GRU)构建了Hybrid-GRU(H-GRU)模型,将回归任务与分类任务混合,利用辨识得到的肌肉阻抗特性结果对模型中的回归部分进行预先训练,使模型具备了一定的先验知识,实现了从驾驶人握力分布到人机共驾状态的映射,并将H-GRU模型与常规GRU模型和支持向量机模型进行对比测试。结果表明:所建立的模型总体分类准确率达到97.59%,相比常规GRU模型和支持向量机模型分别提升6.97%和33.02%。所提出的基于方向盘握力分布的人机共驾状态识别方法不仅能够准确辨识驾驶人人机共驾状态,还能够输出驾驶人肌肉阻抗特性参数,可为驾驶人建模或人机共驾策略开发等提供帮助。 展开更多
关键词 汽车工程 人机共驾 GRU神经网络 驾驶人状态 握力分布 驾驶人肌肉阻抗 递推最小二乘法
原文传递
人-车-路交互下的驾驶人风险响应度建模 被引量:12
4
作者 何仁 赵晓聪 王建强 《中国公路学报》 EI CAS CSCD 北大核心 2020年第9期236-250,共15页
人机共驾中,共驾模式的选择和驾驶控制权的分配高度依赖于对驾驶人状态的正确识别。为了分析人机共驾中驾驶人的状态,对行车风险场模型进行重构,通过构建风险场力作用机制,建立包含驾驶人特性、自车特性和外部风险特性的人-车-路闭环系... 人机共驾中,共驾模式的选择和驾驶控制权的分配高度依赖于对驾驶人状态的正确识别。为了分析人机共驾中驾驶人的状态,对行车风险场模型进行重构,通过构建风险场力作用机制,建立包含驾驶人特性、自车特性和外部风险特性的人-车-路闭环系统中的驾驶人风险响应度模型,用于表征驾驶人对风险的认知能力和应对倾向。根据24位驾驶人在跟车和并道2个场景中的驾驶试验结果,对不同风险响应度下驾驶人的驾驶特性进行分析。研究结果表明:驾驶人风险响应度在驾驶过程中具有时变性,在驾驶人个体之间和不同驾驶场景间均存在差异性。在风险响应度分别为低、中、高的3类驾驶片段中,驾驶人在驾驶时的碰撞时间倒数TTCi和加减速行为均具有显著差异(p<0.05);风险响应度较高的保守型驾驶中,驾驶人行车时倾向于保持较小的TTCi(均值为-0.48s-1,标准差为1.25s-1),单位时间内制动操作最多[均值为0.65次·(15s)-1],总体驾驶风格倾向于规避风险;风险响应度较低的激进型驾驶中,驾驶人行车时倾向于保持最大的TTCi(均值为0.28s-1,标准差为0.42s-1),相较于保守型驾驶,单位时间内加速操作较多[均值为0.48次·(15s)-1],制动操作较少[均值为0.50次·(15s)-1],总体驾驶风格倾向于追求行驶效率;风险响应度居中的平衡型驾驶中,驾驶人行车时所保持的TTCi居中(均值为0.04s-1,标准差为0.36s-1),单位时间内加速操作[均值为0.23次·(15s)-1]和制动[均值为0.41次·(15s)-1]操作总数最少,对于行驶效率和行车安全的追求相对均衡。相较于以往将驾驶人作为孤立个体的驾驶人状态评估方法,所提出的驾驶人风险响应度模型可以依据驾驶人在人-车-路交互中的驾驶表现,更为全面地反映驾驶人的个性化驾驶状态。 展开更多
关键词 交通工程 驾驶人风险响应度 人机共驾 驾驶人状态 行车风险场
原文传递
智能汽车的人机共驾技术研究现状和发展趋势 被引量:48
5
作者 宗长富 代昌华 张东 《中国公路学报》 EI CAS CSCD 北大核心 2021年第6期214-237,共24页
智能汽车的人机共驾技术(HMIoIV)是解决其智能化级别难以快速跨越至高度自动化水平的有效过渡手段。HMIoIV涉及了L0~L3级别的智能汽车的多种自动化技术,包括先进辅助驾驶系统。针对当前国内外智能汽车人机共驾技术的研究现状,对其概念... 智能汽车的人机共驾技术(HMIoIV)是解决其智能化级别难以快速跨越至高度自动化水平的有效过渡手段。HMIoIV涉及了L0~L3级别的智能汽车的多种自动化技术,包括先进辅助驾驶系统。针对当前国内外智能汽车人机共驾技术的研究现状,对其概念、结构和研究内容进行总结,根据独立驾驶人参与的数量和驾驶操作方参与的数量将现有的人机共驾技术分成3类:单驾双控结构、串联型双驾单控结构(Traded Control)和并联型双驾双控结构(Shared Control);并对驾驶人为因素、驾驶人模型、自然驾驶人状态监测和驾驶意图识别、串联型双驾单控结构和并联型双驾双控结构的研究方法以及权限与责任的关系进行全面综述。最后,分析总结当前智能汽车的人机共驾技术所面临的问题和挑战,并对该技术的发展趋势做出展望。 展开更多
关键词 汽车工程 人机共驾 综述 串联型双驾单控结构 并联型双驾双控结构 驾驶人模型 自然驾驶人状态监测 驾驶意图识别
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部