期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于转向盘操作的疲劳驾驶检测方法
被引量:
9
1
作者
金立生
李科勇
+1 位作者
牛清宁
高琳琳
《交通信息与安全》
2014年第5期103-107,共5页
疲劳驾驶是引发道路交通事故的主要原因之一,研究利用转向盘操作行为特征检测驾驶人疲劳的方法对改善交通安全具有重要意义。研究通过分析基于驾驶模拟器的疲劳状态下的实验数据,提取了描述疲劳状态的不同特征参数,运用方差分析方法量...
疲劳驾驶是引发道路交通事故的主要原因之一,研究利用转向盘操作行为特征检测驾驶人疲劳的方法对改善交通安全具有重要意义。研究通过分析基于驾驶模拟器的疲劳状态下的实验数据,提取了描述疲劳状态的不同特征参数,运用方差分析方法量化了不同驾驶状态下特征参数的差异性水平,优化出转向盘转角标准差、转向盘角速度标准差、转向盘转角变异系数、转向盘转角熵和零速百分比5个参数作为疲劳驾驶的有效特征参数组。建立了基于支持向量机的驾驶人疲劳状态检测模型,并采用测试集样本对搭建的模型进一步验证,结果表明该模型对驾驶人疲劳的模型检测准确率为81.33%,灵敏度为85.33%,特异度为77.33%。
展开更多
关键词
交通安全
疲劳
检测
驾驶人疲劳
转向盘操作
支持向量机
下载PDF
职称材料
基于前额脑电多尺度小波对数能量熵的驾驶疲劳检测分析
被引量:
20
2
作者
闵建亮
蔡铭
《中国公路学报》
EI
CAS
CSCD
北大核心
2020年第6期182-189,共8页
为研究脑机接口(BCI)在交通运输中的应用,减少因疲劳驾驶导致的交通安全事故,提出基于前额脑电(EEG)信号多尺度小波对数能量熵的驾驶疲劳检测方法。首先,设计驾驶仿真模拟试验,利用脑电帽采集26名被试清醒驾驶和疲劳驾驶的前额EEG信号,...
为研究脑机接口(BCI)在交通运输中的应用,减少因疲劳驾驶导致的交通安全事故,提出基于前额脑电(EEG)信号多尺度小波对数能量熵的驾驶疲劳检测方法。首先,设计驾驶仿真模拟试验,利用脑电帽采集26名被试清醒驾驶和疲劳驾驶的前额EEG信号,试验过程中,使用主观检测方法每隔20min对被试进行问询;其次,应用MATLAB对采集到的EEG数据进行预处理,基于2种驾驶状态形成被试初始样本数据集;进而,在该数据集基础上,利用多尺度熵的概念,提取EEG信号小波对数能量熵(WLE)特征,同时提取经典模糊熵(FE)特征进行比较分析;然后,运用极限学习机(ELM)对提取的特征数据集进行快速有效的精准分类,并使用留一交叉验证法进行验证评估;最后,对比经典FE分类表现,并结合多种性能指标对驾驶疲劳检测结果进行综合比较。研究结果表明:在本文试验条件下,基于多尺度WLE(MWLE)的前额EEG疲劳识别率显著高于基于多尺度FE(MFE)的识别率,其理论平均正确率达91.8%;基于多尺度熵的EEG信号特征提取方法能有效提高驾驶疲劳识别效果和算法效率;多种性能指标表明前额EEG的WLE可以作为衡量驾驶疲劳的有效生理指标;结果验证了采用基于ELM对MWLE的前额EEG信号进行驾驶疲劳检测方法的有效性和实用性,有助于促进可穿戴BCI在疲劳驾驶预警中的应用。
展开更多
关键词
交通工程
驾驶
安全
多尺度熵
驾驶人疲劳
脑机接口(BCI)
脑电(EEG)信号
极限学习机(ELM)
原文传递
题名
基于转向盘操作的疲劳驾驶检测方法
被引量:
9
1
作者
金立生
李科勇
牛清宁
高琳琳
机构
吉林大学交通学院
公安部道路交通安全研究中心
出处
《交通信息与安全》
2014年第5期103-107,共5页
基金
高校博士学科点专项科研基金项目(批准号:20110061110036)
吉林省人才开发基金项目(批准号:801121100417)
+1 种基金
吉林省科技厅国际合作项目(批准号:20130413056GH)
长春市科技局重大科技攻关计划项目(批准号:2013021-13KG05)资助
文摘
疲劳驾驶是引发道路交通事故的主要原因之一,研究利用转向盘操作行为特征检测驾驶人疲劳的方法对改善交通安全具有重要意义。研究通过分析基于驾驶模拟器的疲劳状态下的实验数据,提取了描述疲劳状态的不同特征参数,运用方差分析方法量化了不同驾驶状态下特征参数的差异性水平,优化出转向盘转角标准差、转向盘角速度标准差、转向盘转角变异系数、转向盘转角熵和零速百分比5个参数作为疲劳驾驶的有效特征参数组。建立了基于支持向量机的驾驶人疲劳状态检测模型,并采用测试集样本对搭建的模型进一步验证,结果表明该模型对驾驶人疲劳的模型检测准确率为81.33%,灵敏度为85.33%,特异度为77.33%。
关键词
交通安全
疲劳
检测
驾驶人疲劳
转向盘操作
支持向量机
Keywords
traffic safety
fatigue detection
driver fatigue
steering performance
support vector machine
分类号
U491 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
基于前额脑电多尺度小波对数能量熵的驾驶疲劳检测分析
被引量:
20
2
作者
闵建亮
蔡铭
机构
中山大学智能工程学院智能交通系统重点实验室
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2020年第6期182-189,共8页
基金
国家自然科学联合基金项目(U1811463)。
文摘
为研究脑机接口(BCI)在交通运输中的应用,减少因疲劳驾驶导致的交通安全事故,提出基于前额脑电(EEG)信号多尺度小波对数能量熵的驾驶疲劳检测方法。首先,设计驾驶仿真模拟试验,利用脑电帽采集26名被试清醒驾驶和疲劳驾驶的前额EEG信号,试验过程中,使用主观检测方法每隔20min对被试进行问询;其次,应用MATLAB对采集到的EEG数据进行预处理,基于2种驾驶状态形成被试初始样本数据集;进而,在该数据集基础上,利用多尺度熵的概念,提取EEG信号小波对数能量熵(WLE)特征,同时提取经典模糊熵(FE)特征进行比较分析;然后,运用极限学习机(ELM)对提取的特征数据集进行快速有效的精准分类,并使用留一交叉验证法进行验证评估;最后,对比经典FE分类表现,并结合多种性能指标对驾驶疲劳检测结果进行综合比较。研究结果表明:在本文试验条件下,基于多尺度WLE(MWLE)的前额EEG疲劳识别率显著高于基于多尺度FE(MFE)的识别率,其理论平均正确率达91.8%;基于多尺度熵的EEG信号特征提取方法能有效提高驾驶疲劳识别效果和算法效率;多种性能指标表明前额EEG的WLE可以作为衡量驾驶疲劳的有效生理指标;结果验证了采用基于ELM对MWLE的前额EEG信号进行驾驶疲劳检测方法的有效性和实用性,有助于促进可穿戴BCI在疲劳驾驶预警中的应用。
关键词
交通工程
驾驶
安全
多尺度熵
驾驶人疲劳
脑机接口(BCI)
脑电(EEG)信号
极限学习机(ELM)
Keywords
traffic engineering
driving safety
multi-scale entropy
driver fatigue
brain-computer interface(BCI)
electroencephalogram(EEG)
extreme learning machine(ELM)
分类号
U491 [交通运输工程—交通运输规划与管理]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于转向盘操作的疲劳驾驶检测方法
金立生
李科勇
牛清宁
高琳琳
《交通信息与安全》
2014
9
下载PDF
职称材料
2
基于前额脑电多尺度小波对数能量熵的驾驶疲劳检测分析
闵建亮
蔡铭
《中国公路学报》
EI
CAS
CSCD
北大核心
2020
20
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部