人机共驾阶段人类驾驶员对驾驶环境保持较高的风险感知水平是保证及时有效、稳定安全接管的核心。本研究通过开展风险感知模拟驾驶试验,获取了驾驶员在典型汽车-动力两轮车碰撞场景下的驾驶行为及脑电响应数据。从驾驶行为层面以制动TTC...人机共驾阶段人类驾驶员对驾驶环境保持较高的风险感知水平是保证及时有效、稳定安全接管的核心。本研究通过开展风险感知模拟驾驶试验,获取了驾驶员在典型汽车-动力两轮车碰撞场景下的驾驶行为及脑电响应数据。从驾驶行为层面以制动TTC(time to collision)和平均加速度为评价指标,利用分位数回归构建了驾驶员风险感知量化模型,通过独立样本检验发现驾驶经验、碰撞场景类型对驾驶员风险感知存在显著影响。在脑电响应层面,通过双独立样本检验及FDR校正发现Alpha频段与驾驶员风险感知显著相关。此外,提出了驾驶员风险感知神经机理,包括视觉感知与认知加工两个阶段。研究结果有助于提升人机共驾汽车的安全性。展开更多
准确识别车辆当前驾驶行为模式是自动驾驶领域亟待解决的技术问题。为实现驾驶行为模式精准解析,提高模型识别精度和可靠性,通过开展自然驾驶试验,采集高速工况下20名驾驶人的驾驶行为数据及视觉特性数据等多源参数信息,分析4类典型驾...准确识别车辆当前驾驶行为模式是自动驾驶领域亟待解决的技术问题。为实现驾驶行为模式精准解析,提高模型识别精度和可靠性,通过开展自然驾驶试验,采集高速工况下20名驾驶人的驾驶行为数据及视觉特性数据等多源参数信息,分析4类典型驾驶行为模式(自由行驶、跟车、左换道、右换道)运行规律及多源参数耦合特性。基于主成分分析法确定4类驾驶行为模式表征指标集,使用支持向量机、随机森林决策树算法建立驾驶行为模式识别模型,通过学习训练,分析比较模型识别结果,对识别效果较好的模型进一步优化,分析优化模型对4类驾驶行为模式识别精度的时序性变化特征。研究结果表明:支持向量机模型、随机森林决策树模型、基于多层感知器神经网络的随机森林优化模型总体识别精度分别为89.4%、90.5%、91.9%;4类驾驶行为模式的AUC(area under the curve)值均高于0.93,可较好地识别车辆当前驾驶行为模式。此外,随机森林优化模型对4类驾驶行为模式的识别精度均随时间推移,呈现先增长后趋于稳定的变化态势,且同一时刻的自由行驶及跟车模式识别精度高于向左及向右换道模式。研究结果可为高级别自动驾驶系统决策及控制策略的制定提供理论基础和技术支持。展开更多
文摘人机共驾阶段人类驾驶员对驾驶环境保持较高的风险感知水平是保证及时有效、稳定安全接管的核心。本研究通过开展风险感知模拟驾驶试验,获取了驾驶员在典型汽车-动力两轮车碰撞场景下的驾驶行为及脑电响应数据。从驾驶行为层面以制动TTC(time to collision)和平均加速度为评价指标,利用分位数回归构建了驾驶员风险感知量化模型,通过独立样本检验发现驾驶经验、碰撞场景类型对驾驶员风险感知存在显著影响。在脑电响应层面,通过双独立样本检验及FDR校正发现Alpha频段与驾驶员风险感知显著相关。此外,提出了驾驶员风险感知神经机理,包括视觉感知与认知加工两个阶段。研究结果有助于提升人机共驾汽车的安全性。
文摘准确识别车辆当前驾驶行为模式是自动驾驶领域亟待解决的技术问题。为实现驾驶行为模式精准解析,提高模型识别精度和可靠性,通过开展自然驾驶试验,采集高速工况下20名驾驶人的驾驶行为数据及视觉特性数据等多源参数信息,分析4类典型驾驶行为模式(自由行驶、跟车、左换道、右换道)运行规律及多源参数耦合特性。基于主成分分析法确定4类驾驶行为模式表征指标集,使用支持向量机、随机森林决策树算法建立驾驶行为模式识别模型,通过学习训练,分析比较模型识别结果,对识别效果较好的模型进一步优化,分析优化模型对4类驾驶行为模式识别精度的时序性变化特征。研究结果表明:支持向量机模型、随机森林决策树模型、基于多层感知器神经网络的随机森林优化模型总体识别精度分别为89.4%、90.5%、91.9%;4类驾驶行为模式的AUC(area under the curve)值均高于0.93,可较好地识别车辆当前驾驶行为模式。此外,随机森林优化模型对4类驾驶行为模式的识别精度均随时间推移,呈现先增长后趋于稳定的变化态势,且同一时刻的自由行驶及跟车模式识别精度高于向左及向右换道模式。研究结果可为高级别自动驾驶系统决策及控制策略的制定提供理论基础和技术支持。