Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid...Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.展开更多
In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis sh...In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.展开更多
A modified polynomial preserving gradient recovery technique is proposed. Unlike the polynomial preserving gradient recovery technique,the gradient recovered with the modified polynomial preserving recovery(MPPR) is c...A modified polynomial preserving gradient recovery technique is proposed. Unlike the polynomial preserving gradient recovery technique,the gradient recovered with the modified polynomial preserving recovery(MPPR) is constructed element-wise, and it is discontinuous across the interior edges.One advantage of the MPPR technique is that the implementation is easier when adaptive meshes are involved.Superconvergence results of the gradient recovered with MPPR are proved for finite element methods for elliptic boundary problems and eigenvalue problems under adaptive meshes. The MPPR is applied to adaptive finite element methods to construct asymptotic exact a posteriori error estimates.Numerical tests are provided to examine the theoretical results and the effectiveness of the adaptive finite element algorithms.展开更多
Estimation method of building damage level was introduced for the accurate and effective estimation of damage extent and relief goods demand according to long-distance image contrast. In order to obtain completion deg...Estimation method of building damage level was introduced for the accurate and effective estimation of damage extent and relief goods demand according to long-distance image contrast. In order to obtain completion degree of building edge extracted from long-distance images before and after disaster, the concentration ratio was analyzed with Hough transformation. Based on the maximum posterior probability, estimation method of affected population was designed to accurately estimate victim population, which can be directly reflected by fugitive population. Moreover, on basis of escape route and fugitive population, demand assignment algorithm by backward calculation was designed to improve rescue efficiency.展开更多
基金Projects(2006AA06Z105, 2007AA06Z134) supported by the National High-Tech Research and Development Program of ChinaProjects(2007, 2008) supported by China Scholarship Council (CSC)
文摘Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.
基金supported partially by the innovation fund of Shanghai Normal Universitysupported partially by NSERC of Canada under Grant OGP0046726.
文摘In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.
基金supported by the national basic research program of China under grant 2005CB321701the program for the new century outstanding talents in universities of China.
文摘A modified polynomial preserving gradient recovery technique is proposed. Unlike the polynomial preserving gradient recovery technique,the gradient recovered with the modified polynomial preserving recovery(MPPR) is constructed element-wise, and it is discontinuous across the interior edges.One advantage of the MPPR technique is that the implementation is easier when adaptive meshes are involved.Superconvergence results of the gradient recovered with MPPR are proved for finite element methods for elliptic boundary problems and eigenvalue problems under adaptive meshes. The MPPR is applied to adaptive finite element methods to construct asymptotic exact a posteriori error estimates.Numerical tests are provided to examine the theoretical results and the effectiveness of the adaptive finite element algorithms.
文摘Estimation method of building damage level was introduced for the accurate and effective estimation of damage extent and relief goods demand according to long-distance image contrast. In order to obtain completion degree of building edge extracted from long-distance images before and after disaster, the concentration ratio was analyzed with Hough transformation. Based on the maximum posterior probability, estimation method of affected population was designed to accurately estimate victim population, which can be directly reflected by fugitive population. Moreover, on basis of escape route and fugitive population, demand assignment algorithm by backward calculation was designed to improve rescue efficiency.