This paper carries out an experiment study of decoupling performance for a novel lateral axis micromachined gyroscope with varying environmental parameters. The non-ideal mathematical model for the coupling mechanism ...This paper carries out an experiment study of decoupling performance for a novel lateral axis micromachined gyroscope with varying environmental parameters. The non-ideal mathematical model for the coupling mechanism of the gyroscope is estab-lished through the gyro dynamic response matrix. The coupling components varying with ambient pressure and temperature induced by stiffness coupling, damping coupling and electrostatic force coupling are semi-analytically discussed. The overall coupling ratio is evaluated via experiments in the custom-built installation. The testing results show that the decoupling per-formance of the gyroscope is sensitive to the environmental parameters and all the non-ideal errors are determined as a function of ambient pressure and temperature. The coupling error varies from 0.05% to 0.25% within the pressure range of 100 Pa-100 kPa. The characteristics of coupling with temperature are measured from 20℃ to 100℃ with a variation from 0.35% to 0.41%. The results also indicate that within the range of measured ambient pressure and temperature, the minimum coupling ratio occurs at 100 Pa and room temperature. The overall performance of the gyroscope is tested under the pressure of about 2000 Pa and room temperature to achieve a relatively low coupling ratio. The scale factor is measured to be 7.8 mV (°)-1 s-1 with nonlinearity about 0.45% in the full-scale range of 600 (°) s-1. The short-term bias stability is approximately 0.06 (°)s-1 (1σ) for 20 min with noise equivalent angular rate evaluated to be 0.077 (°) s-1 Hz-1/2.展开更多
文摘This paper carries out an experiment study of decoupling performance for a novel lateral axis micromachined gyroscope with varying environmental parameters. The non-ideal mathematical model for the coupling mechanism of the gyroscope is estab-lished through the gyro dynamic response matrix. The coupling components varying with ambient pressure and temperature induced by stiffness coupling, damping coupling and electrostatic force coupling are semi-analytically discussed. The overall coupling ratio is evaluated via experiments in the custom-built installation. The testing results show that the decoupling per-formance of the gyroscope is sensitive to the environmental parameters and all the non-ideal errors are determined as a function of ambient pressure and temperature. The coupling error varies from 0.05% to 0.25% within the pressure range of 100 Pa-100 kPa. The characteristics of coupling with temperature are measured from 20℃ to 100℃ with a variation from 0.35% to 0.41%. The results also indicate that within the range of measured ambient pressure and temperature, the minimum coupling ratio occurs at 100 Pa and room temperature. The overall performance of the gyroscope is tested under the pressure of about 2000 Pa and room temperature to achieve a relatively low coupling ratio. The scale factor is measured to be 7.8 mV (°)-1 s-1 with nonlinearity about 0.45% in the full-scale range of 600 (°) s-1. The short-term bias stability is approximately 0.06 (°)s-1 (1σ) for 20 min with noise equivalent angular rate evaluated to be 0.077 (°) s-1 Hz-1/2.