期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
使用支持向量机的微处理器验证向量优化方法 被引量:1
1
作者 王朋宇 郭崎 +2 位作者 沈海华 陈云霁 张珩 《高技术通讯》 EI CAS CSCD 北大核心 2010年第1期68-74,共7页
为了解决微处理器仿真验证中随机验证向量质量不高的问题,提出了一种基于支持向量机(SVM)的验证向量优化方法。该方法将已仿真运行的验证向量及其覆盖率信息作为支持向量机的样本进行有监督学习,得到验证向量关于功能覆盖点的分类器。... 为了解决微处理器仿真验证中随机验证向量质量不高的问题,提出了一种基于支持向量机(SVM)的验证向量优化方法。该方法将已仿真运行的验证向量及其覆盖率信息作为支持向量机的样本进行有监督学习,得到验证向量关于功能覆盖点的分类器。利用训练后的分类器对于新产生的验证向量进行预测,并丢弃预测中不能提高覆盖率的冗余验证向量。实验数据表明该方法能准确地过滤冗余验证向量,提高仿真运行的验证向量的质量。和完全随机的验证向量生成方法相比,该方法达到相同的功能覆盖率仅需要前者1/3的验证向量。 展开更多
关键词 支持向量机(SVM) 功能覆盖率模型 微处理器验证 仿真验证 验证向量优化
下载PDF
芯片功能验证流的高效生成方法
2
作者 孙钊 王勇 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期92-95,共4页
设计验证(DesignVerification)在数字系统设计中已经非常重要。功能验证成为了现代数字系统设计周期地瓶颈。作为对基于仿真地验证方法改进的一次尝试,介绍了一种基于有限状态机生成测试向量的方法。它有效地提高了状态空间的覆盖率。
关键词 设计规范 有限状态机 覆盖率 事件 验证向量
下载PDF
基于蚁群和遗传算法的测试向量生成方法
3
作者 于颂 毛志刚 《微计算机信息》 2009年第27期148-150,共3页
随着设计复杂度的迅速增长,集成电路的测试已成为阻碍其发展的重要因素,如何尽可能自动生成可以满足测试覆盖率的测试向量是这一问题的关键所在。本文在对测试向量自动生成问题分析的基础上,建立了数学模型,并提出了一种适合求解该问题... 随着设计复杂度的迅速增长,集成电路的测试已成为阻碍其发展的重要因素,如何尽可能自动生成可以满足测试覆盖率的测试向量是这一问题的关键所在。本文在对测试向量自动生成问题分析的基础上,建立了数学模型,并提出了一种适合求解该问题的蚁群遗传融合优化算法。该方法首先由蚁群算法得到测试向量集,然后利用遗传算法对向量集进行优化。实验数据表明,通过该算法,只需较少的迭代次数就可以自动生成满足一定覆盖率的测试向量组,由此可以证明该方法在产生高覆盖率测试向量上具有一定的有效性。 展开更多
关键词 验证向量 有限状态机 覆盖率 蚁群算法 遗传算法
下载PDF
Meta-analysis of potentially confounding effect of class size on associations between object-oriented metrics and maintainability
4
作者 卢红敏 周毓明 徐宝文 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期281-283,共3页
This paper uses three size metrics,which are collectable during the design phase,to analyze the potentially confounding effect of class size on the associations between object-oriented(OO)metrics and maintainability... This paper uses three size metrics,which are collectable during the design phase,to analyze the potentially confounding effect of class size on the associations between object-oriented(OO)metrics and maintainability.To draw as many general conclusions as possible,the confounding effect of class size is analyzed on 127 C++ systems and 113 Java systems.For each OO metric,the indirect effect that represents the distortion of the association caused by class size and its variance for individual systems is first computed.Then,a statistical meta-analysis technique is used to compute the average indirect effect over all the systems and to determine if it is significantly different from zero.The experimental results show that the confounding effects of class size on the associations between OO metrics and maintainability generally exist,regardless of whatever size metric is used.Therefore,empirical studies validating OO metrics on maintainability should consider class size as a confounding variable. 展开更多
关键词 OBJECT-ORIENTED metrics VALIDATION class size CONFOUNDING MAINTAINABILITY
下载PDF
SVD-LSSVM and its application in chemical pattern classification 被引量:2
5
作者 TAO Shao-hui CHEN De-zhao HU Wang-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1942-1947,共6页
Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selectin... Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selecting hyper parameters for LSSVM is proposed. SVD-LSSVM is trained through singular value decomposition (SVD) of kernel matrix. Cross validation time of selecting hyper parameters can be saved because a new hyper parameter, singular value contribution rate (SVCR), replaces the penalty factor of LSSVM. Several UCI benchmarking data and the Olive classification problem were used to test SVD-LSSVM. The result showed that SVD-LSSVM has good performance in classification and saves time for cross validation. 展开更多
关键词 Pattern classification Structural risk minimization Least squares support vector machine (LSSVM) Hyper pa-rameter selection Cross validation Singular value decomposition (SVD)
下载PDF
Analysis of the Bovespa Futures and Spot Indexes With High Frequency Data
6
作者 Edimilson Costa Lucas Danilo Braun Santos +2 位作者 Bruno Nunes Medeiro Vinicius Augusto Brunassi Silva Luiz Carlos Monteiro 《Chinese Business Review》 2015年第4期192-200,共9页
Data from the World Federation of Exchanges show that Brazil's Sao Paulo stock exchange is one of the largest worldwide in terms of market value. Thus, the objective of this study is to obtain univariate and bivariat... Data from the World Federation of Exchanges show that Brazil's Sao Paulo stock exchange is one of the largest worldwide in terms of market value. Thus, the objective of this study is to obtain univariate and bivariate forecasting models based on intraday data from the futures and spot markets of the BOVESPA index. The interest is to verify if there exist arbitrage opportunities in Brazilian financial market. To this end, three econometric forecasting models were built: ARFIMA, vector autoregressive (VAR), and vector error correction (VEC). Furthermore, it presents the results of a Granger causality test for the aforementioned series. This type of study shows that it is important to identify arbitrage opportunities in financial markets and, in particular, in the application of these models on data of this nature. In terms of the forecasts made with these models, VEC showed better results. The causality test shows that futures BOVESPA index Granger causes spot BOVESPA index. This result may indicate arbitrage opportunities in Brazil. 展开更多
关键词 econometric models ARBITRATION stock exchange vector autoregressive (VAR) vector error correction (VEC) Granger causality
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部