期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
骨/软骨免疫调节水凝胶构建策略与应用研究进展 被引量:1
1
作者 李茂源 郑国爽 +3 位作者 杨佳慧 陈小芳 许剑锋 赵德伟 《中国修复重建外科杂志》 CAS CSCD 北大核心 2023年第11期1423-1430,共8页
目的 综述骨/软骨免疫调节水凝胶构建策略与应用的研究进展。方法 广泛查阅近年国内外有关骨/软骨免疫调节水凝胶相关文献,从不同免疫细胞的免疫应答机制、免疫调节水凝胶的构建策略及其实际应用方面进行总结。结果 基于不同免疫细胞的... 目的 综述骨/软骨免疫调节水凝胶构建策略与应用的研究进展。方法 广泛查阅近年国内外有关骨/软骨免疫调节水凝胶相关文献,从不同免疫细胞的免疫应答机制、免疫调节水凝胶的构建策略及其实际应用方面进行总结。结果 基于不同免疫细胞的免疫应答机制,设计具有免疫调节作用的生物材料,可以调控机体免疫应答,从而促进骨/软骨组织再生。免疫调节水凝胶具有良好的生物相容性、可调节性和多功能性,通过调节水凝胶的理化性质及负载因子或细胞,可以对机体的免疫系统进行目的性调控,从而形成有利于骨软骨再生的免疫微环境。结论 免疫调节水凝胶可以通过影响宿主器官或细胞的免疫调节过程,最终达到促进骨软骨修复的作用,在骨软骨缺损修复方面展现出广泛的应用前景。但该材料还需要更多基础和临床研究的数据支撑,才能进一步推进其临床转化进程。 展开更多
关键词 骨/软骨组织工程 免疫调节 水凝胶 构建策略
原文传递
体外构建壳聚糖/β-甘油磷酸钠/明胶仿生梯度支架
2
作者 胡雪岩 宋克东 +4 位作者 卢延国 李文芳 李丽颖 郑双双 刘天庆 《高校化学工程学报》 EI CAS CSCD 北大核心 2019年第5期1133-1140,共8页
针对软骨特定结构缺损后不能自我修复的特点,通过调控单层原料质量比,构建具有复杂分层结构的壳聚糖/β-甘油磷酸钠/明胶(chitosan/β-sodium glycerophosphates/gelatin,Cs/GP/Gel)仿生复合梯度支架。通过对比物理性能优选适宜比例的... 针对软骨特定结构缺损后不能自我修复的特点,通过调控单层原料质量比,构建具有复杂分层结构的壳聚糖/β-甘油磷酸钠/明胶(chitosan/β-sodium glycerophosphates/gelatin,Cs/GP/Gel)仿生复合梯度支架。通过对比物理性能优选适宜比例的支架材料,并将骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)接种到梯度支架上考察其生物相容性。结果表明,Cs/GP/Gel复合梯度支架具有良好的吸水性能[(584.24±3.79)%^(677.47±1.70)%]、孔隙率[(86.34±5.10)%^(95.20±2.86)%]和降解性能[(86.09±2.46)%^(92.48±3.86)%]。扫描电镜(SEM)结果表明,支架材料在纵向维度呈现出明显的生理分层结构和孔径梯度渐进性,可有效模拟真实软骨的天然生理分层结构。比例为9:1:5的Cs/GP/Gel复合梯度支架适于作为骨软骨的支撑材料。对BMSCs-支架复合物Live/Dead染色后发现,细胞在梯度支架材料上存活、分布及伸展良好。该仿生梯度支架为开发新型生物医用材料提供了重要依据。 展开更多
关键词 仿生梯度支架 壳聚糖/β-甘油磷酸钠/明胶 髓间充质干细胞 骨/软骨组织工程
下载PDF
Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes 被引量:5
3
作者 Ming ZHAO Zhu CHEN +6 位作者 Kang LIU Yu-qing WAN Xu-dong LI Xu-wei LUO Yi-guang BAI Ze-long YANG Gang FENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2015年第11期914-923,共10页
Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was... Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P〈0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage. 展开更多
关键词 Articular cartilage Chitosan hydrogel REPAIR Tissue engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部