期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Att-U-Net:融合注意力机制的U-Net骨导语声增强
1
作者 邦锦阳 张玥 +3 位作者 张雄伟 孙蒙 刘伟 栾合禹 《应用声学》 CSCD 北大核心 2023年第4期814-824,共11页
近年来,大量全卷积网络、U-Net等编解码网络结构应用于语声增强,然而,此类结构不能充分利用先后时间与高低频率之间的关联信息,对于处理长序列数据存在信息丢失的问题。为保持计算效率的同时实现更充分的时频关联信息建模,该文提出一种... 近年来,大量全卷积网络、U-Net等编解码网络结构应用于语声增强,然而,此类结构不能充分利用先后时间与高低频率之间的关联信息,对于处理长序列数据存在信息丢失的问题。为保持计算效率的同时实现更充分的时频关联信息建模,该文提出一种融合注意力机制的U-Net网络的骨导语声增强方法(Att-U-Net),通过在跳跃连接中引入注意力机制,生成一个权重矩阵,将编码层中的全局信息根据权重融入对应的解码层中,使网络在编解码过程中能够关注输入数据中与增强目标相关程度高的重要信息,同时抑制不相关的信息。在骨导语声数据集上的实验表明,融合注意力机制的U-Net网络能在保持模型轻量化的同时有效提升骨导语声的增强效果,增强后的语声在各项客观评价指标上均优于基线模型。 展开更多
关键词 骨导语声增强 深度学习 注意力机制 U-Net
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部