The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to ...The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.展开更多
Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report...Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.展开更多
With the aid of a postsynthetic metathesis method, an inert nitrogen-rich porphyrinic metal-organic framework can exhibit a high catalytic activity in one-pot deacetalization-Knoevenagel condensation reaction.
文摘The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.
基金supported by the National Natural Science Foundation of China (21875212)the Key Program of National Natural Science Foundation (51632008)+2 种基金the Major R&D Plan of Zhejiang Natural Science Foundation (LD18E020001)the National Key Research and Development Program (2016YFA0200204)the Fundamental Research Funds for the Central Universities。
文摘Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.
基金Financial support of the ligand and MOFs synthesis in part by the Center for Gas Separations Relevant to Clean Energy Technologiesan Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015+9 种基金part of the U.S. Department of Energy (DOE), ARPA-e (DE-AR0000249)DOENational Energy Technology Laboratory Award (DE-FE0026472)the Welch Foundation under award number A-1725the Welch Endowed Chair to HJZ (A-0030) for support of the structural analysesThe X-ray diffractometers, and crystallographic computing systems in the X-ray Diffraction Laboratory at the Department of Chemistry, Texas A & M University were purchased with funds provided by the National Science Foundation (CHE-9807975, CHE-0079822, CHE-0215838)The FESEM acquisition was supported by the NSF (DBI-0116835)the VP for Research Office, and the TX Eng. Exp. Station. D. Liu and C. Zhong thank the supports of Natural Science Foundation of China (21136001, 21276008)National Key Basic Research Program of China (2013CB733503)D.L. also thanks the support of China Scholarship Council (201208110375) Beijing Higher Education Young EliteTeacher Project (YETP0486)
文摘With the aid of a postsynthetic metathesis method, an inert nitrogen-rich porphyrinic metal-organic framework can exhibit a high catalytic activity in one-pot deacetalization-Knoevenagel condensation reaction.