期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
BK-means:骨架初始解K-means
被引量:
3
1
作者
宗瑜
金萍
李明楚
《计算机工程与应用》
CSCD
北大核心
2009年第14期49-52,共4页
K-means是典型的启发式聚类算法,容易受到初始解的影响而无法获得高质量的聚类结果。骨架是近年来启发式算法设计的研究热点,它是指所有全局最优解中相同的部分,对于提高启发式算法性能具有重要意义。给出的骨架初始解K-means算法(BK-me...
K-means是典型的启发式聚类算法,容易受到初始解的影响而无法获得高质量的聚类结果。骨架是近年来启发式算法设计的研究热点,它是指所有全局最优解中相同的部分,对于提高启发式算法性能具有重要意义。给出的骨架初始解K-means算法(BK-means)的基本思想是:首先利用K-means算法得到一组局部最优解(聚类结果),通过对局部最优解求交得到骨架簇。利用骨架簇构造骨架初始解及新的搜索空间。最后以骨架初始解引导K-means算法在新的搜索空间中搜索聚类结果。在15组仿真数据集和4组实际数据集上的实验结果表明,BK-means算法具有获得高内聚、高分离的聚类结果能力。
展开更多
关键词
聚类
K—means算法
启发式算法
骨架初始解
下载PDF
职称材料
题名
BK-means:骨架初始解K-means
被引量:
3
1
作者
宗瑜
金萍
李明楚
机构
大连理工大学软件学院
澳大利亚维多利亚大学信息应用中心
皖西学院计算机科学与技术系
出处
《计算机工程与应用》
CSCD
北大核心
2009年第14期49-52,共4页
基金
国家自然科学基金No.60503003
教育部博士点基金No.20070141020
安徽省教育厅自然科学基金No.KJ2008B133,No.KJ2008B05ZC~~
文摘
K-means是典型的启发式聚类算法,容易受到初始解的影响而无法获得高质量的聚类结果。骨架是近年来启发式算法设计的研究热点,它是指所有全局最优解中相同的部分,对于提高启发式算法性能具有重要意义。给出的骨架初始解K-means算法(BK-means)的基本思想是:首先利用K-means算法得到一组局部最优解(聚类结果),通过对局部最优解求交得到骨架簇。利用骨架簇构造骨架初始解及新的搜索空间。最后以骨架初始解引导K-means算法在新的搜索空间中搜索聚类结果。在15组仿真数据集和4组实际数据集上的实验结果表明,BK-means算法具有获得高内聚、高分离的聚类结果能力。
关键词
聚类
K—means算法
启发式算法
骨架初始解
Keywords
clustering
K-means algorithm
heuristic algorithm
backbone initialization
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
BK-means:骨架初始解K-means
宗瑜
金萍
李明楚
《计算机工程与应用》
CSCD
北大核心
2009
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部