期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
BK-means:骨架初始解K-means 被引量:3
1
作者 宗瑜 金萍 李明楚 《计算机工程与应用》 CSCD 北大核心 2009年第14期49-52,共4页
K-means是典型的启发式聚类算法,容易受到初始解的影响而无法获得高质量的聚类结果。骨架是近年来启发式算法设计的研究热点,它是指所有全局最优解中相同的部分,对于提高启发式算法性能具有重要意义。给出的骨架初始解K-means算法(BK-me... K-means是典型的启发式聚类算法,容易受到初始解的影响而无法获得高质量的聚类结果。骨架是近年来启发式算法设计的研究热点,它是指所有全局最优解中相同的部分,对于提高启发式算法性能具有重要意义。给出的骨架初始解K-means算法(BK-means)的基本思想是:首先利用K-means算法得到一组局部最优解(聚类结果),通过对局部最优解求交得到骨架簇。利用骨架簇构造骨架初始解及新的搜索空间。最后以骨架初始解引导K-means算法在新的搜索空间中搜索聚类结果。在15组仿真数据集和4组实际数据集上的实验结果表明,BK-means算法具有获得高内聚、高分离的聚类结果能力。 展开更多
关键词 聚类 K—means算法 启发式算法 骨架初始解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部