Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84...Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.展开更多
A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.5...A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.展开更多
Al_(x)/HKUST-1(x=1/24,1/12,1/6,1/3),one of the bimetallic copper-based organic framework materials,was successfully prepared by the synthetic exchange method and characterized by X-ray diffraction(XRD),scanning electr...Al_(x)/HKUST-1(x=1/24,1/12,1/6,1/3),one of the bimetallic copper-based organic framework materials,was successfully prepared by the synthetic exchange method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),specific surface area(BET),thermogravimetric analysis(TG),infrared spectra(IR),X-ray photoelectron spectroscopy(XPS),and H_(2)-temperature programmed reduction(H_(2)-TPR).The findings indicated that Al_(x)/HKUST-1 maintained the octahedral morphology of its precursor(HKUST-1).The thermal stability and catalytic reduction ability of HKUST-1 skeleton were improved by doping aluminum(Al^(3+)).Al_(1/12)/HKUST-1 showed the best performance among all samples,with a nitric oxide(NO)conversion rate of 100%at 210℃(50℃lower than that of HKUST-1).The valence kind of Al,Cu,and O in Al_(1/12)/HKUST-1 did not change after the catalytic reaction,but the contents of Al,Cu,and O in different forms changed significantly.The catalytic process of the Al_(x)/HKUST-1 followed a Langmuir-Hinshelwood mechanism.展开更多
Development of the high activity,promoter‐free catalysts for carbonyl sulfide(COS)hydrolysis is important for the efficient utilization of various feedstocks.In this study,the Cu‐based metal‐organic framework HKUST...Development of the high activity,promoter‐free catalysts for carbonyl sulfide(COS)hydrolysis is important for the efficient utilization of various feedstocks.In this study,the Cu‐based metal‐organic framework HKUST‐1is synthesized by a simple and mild anodic‐dissolution electrochemical method.The physical and chemical properties of the samples are characterized by several techniques,including scanning electron microscopy,X‐ray diffraction,Brunauer‐Emmett‐Teller analysis and X‐ray photoelectron spectroscopy.The results reveal that the synthesis voltage plays a crucial role in controlling the morphology of the resulting HKUST‐1.The obtained samples function as novel catalysts for the hydrolysis of COS.A high efficiency,approaching100%,can be achieved for the conversion of COS at150oC over the optimal HKUST‐1synthesized at25V.This is significantly higher than that of the sample prepared by the traditional hydrothermal method.Additionally,the effects of the water temperature and the flow velocity on the hydrolysis of COS are also investigated in detail.Finally,a possible reaction pathway of COS hydrolysis over HKUST‐1is also proposed.This work represents the first example of MOFs applied to the catalytic hydrolysis of COS.The results presented in this study can be anticipated to give a feasible impetus to design novel catalysts for removing the sulfur‐containing compounds.展开更多
Three 3D manganese-organic frameworks, Mn2(BPTC)(DMF)2(H2O)·DMF·3H2O(1), Mn2(BPTC)(bipy)(DMF)·DMF·H2O(2), and Mn2(BPTC)(phen)(DMF)·EtOH(3), have been solvothermally synthesized using 3,3′,5,5...Three 3D manganese-organic frameworks, Mn2(BPTC)(DMF)2(H2O)·DMF·3H2O(1), Mn2(BPTC)(bipy)(DMF)·DMF·H2O(2), and Mn2(BPTC)(phen)(DMF)·EtOH(3), have been solvothermally synthesized using 3,3′,5,5′-biphenyltetracarboxylic acid(H4BPTC). All complexes are characterized by PXRD, EA, IR and TG. The results show that they all bear the PtS topology with(42.84)(42.84) for the vertex symbols of the planar and tetrahedral nodes, in which the BPTC ligand is considered as a square-planar 4-connected linker, and every binuclear SBU connected to the four BPTC ligands is simplified into tetrahedral 4-connected nodes. Because the three coordination sites of one metal center of SBU are occupied by the coordinated solvent molecules, complex 1 exhibits low stability. After substituting 2,2′-bipy or 1,10-phen for two coordinated solvent molecules, complexes 2 and 3 display evidently higher structure stability. The magnetism property of complex 2 is also discussed in detail.展开更多
文摘Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.
基金supported by the National Natural Science Foundation of China(21372087)~~
文摘A post-synthetic modification strategy has been used to prepare three solid base catalysts, including Er(btc)(ED)075(H2O)0.25 (2, btc = 1,3,5-benzenetricarboxylates, ED = 1,2-ethanediamine), Er(btc)(PP)0.55(H20)0.45 (3, PP = piperazine), and Er(btc)(DABCO)0.15(H2O)0.85 (4, DABCO = 1,4- diazabicyclo[2.2.2]octane), by grafting three different diamines onto the coordinatively unsaturated Er(III) ions into the channels of the desolvated lanthanide metal-organic framework (Er(otc)). The resulting metal-organic frameworks were characterized by elemental analysis, thermogravimetric analysis, powder X-ray diffraction, and N2 adsorption. Based on its higher loading ratio of the diamine, as well as its greater stability and porosity, catalyst 2 exhibited higher catalytic activity and reusability than catalysts 3 and 4- for the Knoevenagel condensation reaction. The catalytic mechanism of 2 has also been investigated using size-selective catalysis tests.
基金financial supports from the Natural Science Foundation of Hunan Province,China(No.2020JJ4685)the Open Fund for Key Laboratory of Metallurgical Emission Reduction and Resources Utilization of Ministry of Education in Anhui University of Technology,China(No.JKF20-02)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2019JJ40378)the Open Fund for State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control in Wuhan University of Science and Technology,China(No.HB201908)the Scientific Technology Project of Strategic Emerging Industries and Major Achievement Transformation of Hunan Province,China(No.2017GK4010)。
文摘Al_(x)/HKUST-1(x=1/24,1/12,1/6,1/3),one of the bimetallic copper-based organic framework materials,was successfully prepared by the synthetic exchange method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),specific surface area(BET),thermogravimetric analysis(TG),infrared spectra(IR),X-ray photoelectron spectroscopy(XPS),and H_(2)-temperature programmed reduction(H_(2)-TPR).The findings indicated that Al_(x)/HKUST-1 maintained the octahedral morphology of its precursor(HKUST-1).The thermal stability and catalytic reduction ability of HKUST-1 skeleton were improved by doping aluminum(Al^(3+)).Al_(1/12)/HKUST-1 showed the best performance among all samples,with a nitric oxide(NO)conversion rate of 100%at 210℃(50℃lower than that of HKUST-1).The valence kind of Al,Cu,and O in Al_(1/12)/HKUST-1 did not change after the catalytic reaction,but the contents of Al,Cu,and O in different forms changed significantly.The catalytic process of the Al_(x)/HKUST-1 followed a Langmuir-Hinshelwood mechanism.
基金supported by the National Natural Science Foundation of China (21603034,21576051)the National High Technology Research and Development Program of China (863 Program,2015AA03A402)~~
文摘Development of the high activity,promoter‐free catalysts for carbonyl sulfide(COS)hydrolysis is important for the efficient utilization of various feedstocks.In this study,the Cu‐based metal‐organic framework HKUST‐1is synthesized by a simple and mild anodic‐dissolution electrochemical method.The physical and chemical properties of the samples are characterized by several techniques,including scanning electron microscopy,X‐ray diffraction,Brunauer‐Emmett‐Teller analysis and X‐ray photoelectron spectroscopy.The results reveal that the synthesis voltage plays a crucial role in controlling the morphology of the resulting HKUST‐1.The obtained samples function as novel catalysts for the hydrolysis of COS.A high efficiency,approaching100%,can be achieved for the conversion of COS at150oC over the optimal HKUST‐1synthesized at25V.This is significantly higher than that of the sample prepared by the traditional hydrothermal method.Additionally,the effects of the water temperature and the flow velocity on the hydrolysis of COS are also investigated in detail.Finally,a possible reaction pathway of COS hydrolysis over HKUST‐1is also proposed.This work represents the first example of MOFs applied to the catalytic hydrolysis of COS.The results presented in this study can be anticipated to give a feasible impetus to design novel catalysts for removing the sulfur‐containing compounds.
基金supported by the National Natural Science Foundation of China(21271117,21201179)the Special Fund for Postdoctoral Innovation Program of the Shandong Province(201202040)+4 种基金the China Postdoctoral Science Foundation(2012M 510106)a project of the Shandong Province Higher Educational Science and Technology Program(J06A55)the Shandong Provincial Natural Science Foundation(ZR2010BL011)the Shandong Natural Science Fund for Distinguished Young Scholars(BS2012CL038)the Fundamental Research Funds for the Central Universities(12CX04092A,13CX05015A)
文摘Three 3D manganese-organic frameworks, Mn2(BPTC)(DMF)2(H2O)·DMF·3H2O(1), Mn2(BPTC)(bipy)(DMF)·DMF·H2O(2), and Mn2(BPTC)(phen)(DMF)·EtOH(3), have been solvothermally synthesized using 3,3′,5,5′-biphenyltetracarboxylic acid(H4BPTC). All complexes are characterized by PXRD, EA, IR and TG. The results show that they all bear the PtS topology with(42.84)(42.84) for the vertex symbols of the planar and tetrahedral nodes, in which the BPTC ligand is considered as a square-planar 4-connected linker, and every binuclear SBU connected to the four BPTC ligands is simplified into tetrahedral 4-connected nodes. Because the three coordination sites of one metal center of SBU are occupied by the coordinated solvent molecules, complex 1 exhibits low stability. After substituting 2,2′-bipy or 1,10-phen for two coordinated solvent molecules, complexes 2 and 3 display evidently higher structure stability. The magnetism property of complex 2 is also discussed in detail.