针对汽车车身局部修形传统气动减阻方法存在经验式和盲目性问题,以某款成熟简化实车发动机罩低阻曲面优化减阻为例,提出了基于硬点-骨架约束的车身低阻曲面优化设计法.采用DOE(design of experiment)试验设计方法对发动机舱罩进行硬点采...针对汽车车身局部修形传统气动减阻方法存在经验式和盲目性问题,以某款成熟简化实车发动机罩低阻曲面优化减阻为例,提出了基于硬点-骨架约束的车身低阻曲面优化设计法.采用DOE(design of experiment)试验设计方法对发动机舱罩进行硬点采样,通过硬点-骨架约束建立样本曲面.构建以硬点为设计因子,阻力系数为响应值的数学近似模型,并使用多岛遗传算法获得发动机舱罩理论最优解.计算表明:优化后的实车车模气动阻力减少3.32%,证明了硬点-骨架约束在车身减阻上的可行性和有效性.展开更多
文摘针对汽车车身局部修形传统气动减阻方法存在经验式和盲目性问题,以某款成熟简化实车发动机罩低阻曲面优化减阻为例,提出了基于硬点-骨架约束的车身低阻曲面优化设计法.采用DOE(design of experiment)试验设计方法对发动机舱罩进行硬点采样,通过硬点-骨架约束建立样本曲面.构建以硬点为设计因子,阻力系数为响应值的数学近似模型,并使用多岛遗传算法获得发动机舱罩理论最优解.计算表明:优化后的实车车模气动阻力减少3.32%,证明了硬点-骨架约束在车身减阻上的可行性和有效性.