The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochem...The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochemical tests. The results showed that, with the addition of 1% Sn and the Ca content of 0.2%?0.5%, the microstructure of the as-extruded Mg?Sn?Ca alloys became homogenous, which led to increased mechanical properties and improved corrosion resistance. Further increase of Ca content up to 1.5% improved the strength, but deteriorated the ductility and corrosion resistance. For the alloy containing 0.5% Ca, when the Sn content increased from 1% to 3%, the ultimate tensile strength increased with a decreased corrosion resistance, and the lowest yield strength and ductility appeared with the Sn content of 2%. These behaviors were determined by Sn/Ca mass ratio. The analyses showed that as-extruded Mg?1Sn?0.5Ca alloy was promising as a biodegradable orthopedic implant.展开更多
基金Project(2013CB632200)supported by the National Basic Research Program of ChinaProjects(51474043,51531002)supported by the National Natural Science Foundation of China+1 种基金Projects(CSTC2013JCYJC60001,KJZH14101)supported by Chongqing Municipal Government,ChinaProject(2015M581350)supported by the China Postdoctoral Science Foundation
文摘The as-extruded Mg?Sn?Ca alloys were prepared and investigated for orthopedic applications via using optical microscopy, scanning electron microscopy, X-ray diffraction, as well as tensile, immersion and electrochemical tests. The results showed that, with the addition of 1% Sn and the Ca content of 0.2%?0.5%, the microstructure of the as-extruded Mg?Sn?Ca alloys became homogenous, which led to increased mechanical properties and improved corrosion resistance. Further increase of Ca content up to 1.5% improved the strength, but deteriorated the ductility and corrosion resistance. For the alloy containing 0.5% Ca, when the Sn content increased from 1% to 3%, the ultimate tensile strength increased with a decreased corrosion resistance, and the lowest yield strength and ductility appeared with the Sn content of 2%. These behaviors were determined by Sn/Ca mass ratio. The analyses showed that as-extruded Mg?1Sn?0.5Ca alloy was promising as a biodegradable orthopedic implant.