Given the limited spontaneous repair that follows cartilage injury, demand is growing for tissue engi- neering approaches for cartilage regeneration. There are two major applications for tissue-engineered cartilage. O...Given the limited spontaneous repair that follows cartilage injury, demand is growing for tissue engi- neering approaches for cartilage regeneration. There are two major applications for tissue-engineered cartilage. One is in orthopedic surgery, in which the engineered cartilage is usually used to repair cartilage defects or loss in an articular joint or meniscus in order to restore the joint function. The other is for head and neck reconstruction, in which the engineered cartilage is usually applied to repair cartilage defects or loss in an auricle, trachea, nose, larynx, or eyelid. The challenges faced by the engineered car- tilage for one application are quite different from those faced by the engineered cartilage for the other application. As a result, the emphases of the engineering strategies to generate cartilage are usually quite different for each application. The statuses of preclinical animal investigations and of the clinical translation of engineered cartilage are also at different levels for each application. The aim of this review is to provide an opinion piece on the challenges, current developments, and future directions for cartilage engineering for both applications.展开更多
The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation o...The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation of PC in 3-dimensional (3D) poly-lactic-co-glycolic acid (PLGA) fleeces cultured in medium containing allogeneic human serum. PCs were isolated and expanded in monolayer culture. Expanded cells of passage 3 were seeded into PLGA constructs and cultured in osteogenic medium for a maximum period of 28 d. Morphological, histological and cell viability analyses of three-dimensionally cultured PCs were performed to elucidate osseous synthesis and deposition of a calcified matrix. Furthermore, the mRNA expression of type Ⅰ collagen, osteocalcin and osteonectin was semi-quantitively evaluated by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The fibrin gel immobilization technique provided homogeneous PCs distribution in 3D PLGA constructs. Live-dead staining indicated a high viability rate of PCs inside the PLGA scaffolds. Secreted nodules ofneo-bone tissue formation and the presence of matrix mineralization were confirmed by positive yon Kossa staining. The osteogenic differentiation of PCs was further demonstrated by the detection of type I collagen, osteocalcin and osteonectin gene expression. The results of this study support the concept that this tissue engineering method presents a promising method for creation of new bone in vivo.展开更多
Stem cell homing, namely the recruitment of mesenchymal stem cells (MSCs) to injured tissues, is highly effective for bone regeneration in vivo. In order to explore whether the incorporation of mimetic peptide seque...Stem cell homing, namely the recruitment of mesenchymal stem cells (MSCs) to injured tissues, is highly effective for bone regeneration in vivo. In order to explore whether the incorporation of mimetic peptide sequences on magnesium-doped (Mg-doped) hydroxyapatite (HA) may regulate the homing of MSCs, and thus induce cell migration to a specific site, we covalently functionalized MgHA disks with two chemotactic/haptotactic factors: either the fibronectin fragment III1-C human (FF III1-C), or the peptide sequence Gly-Arg-Gly-Asp-Ser-Pro-Lys, a fibronectin analog that is able to bind to integrin trans- membrane receptors. Preliminary biological evaluation of MSC viability, analyzed by 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, suggested that stem cells migrate to the MgHA disks in resoonse to the grafted haototaxis stimuli.展开更多
To investigate the feasibility of implanting the biocomposite of calcium phosphate cement(CPC)/polylactic acid-polyglycolic acid(PLGA) into animals for bone defects repairing,the biocomposite of CPC/PLGA was prepared ...To investigate the feasibility of implanting the biocomposite of calcium phosphate cement(CPC)/polylactic acid-polyglycolic acid(PLGA) into animals for bone defects repairing,the biocomposite of CPC/PLGA was prepared and its setting time,compressive strength,elastic modulus,pH values,phase composition of the samples,degradability and biocompatibility in vitro were tested.The above-mentioned composite implanted with bone marrow stromal cells was used to repair defects of the radius in rabbits.Osteogenesis was histomorphologically observed by using an electron-microscope.The results show that compared with the CPC,the physical and chemical properties of CPC/PLGA composite have some differences in which CPC/PLGA composite has better biological properties.The CPC/PLGA composite combined with seed cells is superior to the control in terms of the amount of new bones formed after CPC/PLGA composite is implanted into the rabbits,as well as the speed of repairing bone defects.The results suggest that the constructed CPC/PLGA composite basically meets the requirements of tissue engineering scaffold materials and that the CPC/PLGA composite implanted with bone marrow stromal cells may be a new artificial bone material for repairing bone defects because it can promote the growth of bone tissues.展开更多
Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral hea...Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral head of patients were inoculated onto PDLLA/HA/DBM, PLA and DBM respectively. The proliferation rate and collagen Ⅰ expression were detected. The interface between biomaterial and osteoblasts was investigated with phase contrast microscopy and electron scanning microscopy. Results: Best proliferation rate was observed with the PDLLA/HA/DBM and followed by DBM and PLA, suggesting that PDLLA/HA/DBM satisfying most requirements for the cultivation of human osteoblasts. Scanning electron microscopy showed the morphology of osteoblasts was correlated with the proliferation data. The cells, well spread and flattened, were attached closely on the surface of biomaterial with an arched structure and had normal morphology. The extracellular collagenous matrixs covered the surface of biomaterial and packed the granules of biomaterial. Conclusion: PDLLA/HA/DBM can form osteointerface early and have a good biocompability.展开更多
Objective: To observe the effects of different gravitational environments on release of prostaglandin E2 in rat calvarial osteoblasts induced by fluid shear stress (FSS) so that to investigate the influence of differe...Objective: To observe the effects of different gravitational environments on release of prostaglandin E2 in rat calvarial osteoblasts induced by fluid shear stress (FSS) so that to investigate the influence of different gravity on mechanotransduction in osteoblasts. Methods: Osteoblasts were isolated from neonatal rat calvariae and then were set to three groups. Each was cultured in one gravitational environment; 1G terrestrial gravitational environment (control), simulated weightlessness achieved by using clinostat and 3G gravitational environment achieved by using centrifuge for 60 h, then osteoblasts were treated with 0. 5 Pa or 1. 5 Pa FSS in a flow chamber for 1 h. The release of PGE2 in osteoblasts was determined. Results: In 1G gravitational environment, the release of PGE2 was significantly increased along with the sustaining of FSS treatments (P<0. 01), but there was no remarkable difference between the responses to 0. 5 Pa FSS and 1. 5 Pa FSS (P>0. 05). While in simulated weightlessness environment group, no detectable release of PGE2 was found with the treatment of 0. 5 Pa FSS (P<0. 01), and the release of PGE2 was delayed and the amount of PGE2 production was remarkably decreased with 1. 5 Pa FSS treatment as compared with that of 1G group (P<0. 01). The responsiveness of osteoblasts cultured in 3G gravitational environment to FSS was similar to that of 1G group. Conclusion: These results indicate that in vitro the mechanotransduction in osteoblasts iss affected by stimulated weightlessness, whereas it is not altered in 3G gravitational environment.展开更多
In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected ...In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatin composite increased to 5.12 MPa,around 50 times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this study might be a potential scaffold for bone tissue engineering.展开更多
Objective To create a method for constructing a tissue-engineered graft with self-derived bone marrow cells and heterogeneous acellular matrix.Methods The mononuclear cells were isolated from bone marrows drawn from p...Objective To create a method for constructing a tissue-engineered graft with self-derived bone marrow cells and heterogeneous acellular matrix.Methods The mononuclear cells were isolated from bone marrows drawn from piglets and cultured in different mediums including either vascular endothelial growth factor(VEGF)or platelet derived growth factor BB(PDGF-BB)to observe their expansion and differentiation.The aortas harvested from canines were processed by a multi-step decellularizing technique to erase.The bone marrow mononuclear cells cultured in the mediums without any growth factors were seeded to the acellular matrix.The cells-seeded grafts were incubated in vitro for 6 d and then implanted to the cells-donated piglets to substitute parts of their native pulmonary arteries.Results After 4 d culturing,the cells incubated in the medium including VEGF showed morphological feature of endothelial cells(ECs)and were positive to ECs-specific monoclonal antibodies of CD31,FLK-1,VE-Cadherin and vWF.The cells incubated in the medium including PDGF-BB showed morphological feature of smooth muscle cells(SMCs)and were positive to SMCs-specific monoclonal antibodies of α-SMA and Calponin.One hundred days after implantation of seeded grafts,the inner surfaces of explants were smooth without thrombosis,calcification and aneurysm.Under the microscopy,plenty of growing cells could be seen and elastic and collagen fibers were abundant.Conclusion Mesenchymal stem cells might exist in mononuclear cells isolated from bone marrow.They would differentiate into endothelial cells or smooth muscle cells in proper in vitro or in vivo environments.The bone marrow mononuclear cells might be a choice of seeding cells in constructing tissue-engineered graft.展开更多
Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was...Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P〈0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage.展开更多
Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction.Autografts and allografts have been used in clinical application for some time,but they have disadvantage...Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction.Autografts and allografts have been used in clinical application for some time,but they have disadvantages.With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques,the results of bone surgery may not be ideal.This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair.Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering,enhancing bone tissue regeneration in terms of mechanical strength,pore geometry,and bioactive factors,and overcoming some of the disadvantages of conventional technologies.This review focuses on the basic principles and characteristics of various fabrication technologies,such as stereolithography,selective laser sintering,and fused deposition modeling,and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering.In the near future,the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.展开更多
Objective : To prepare and observe the physicochemical properties of scaffold materials of heterogeneous deproteinized tissue-engineered bone. Methods: Deproteinized bone was made through a series of physicochemica...Objective : To prepare and observe the physicochemical properties of scaffold materials of heterogeneous deproteinized tissue-engineered bone. Methods: Deproteinized bone was made through a series of physicochemical treatments in pig ribs and analyzed with histological observation, scanning electron microscopy, infrared spectrum, X-ray diffraction and energy dispersive analysis, Kjeidahl determination and mechanics analysis. Results: Interstitial collagen fiber was positive and mucin was negative in deproteinized bone, but, both were positive in fresh bone. Deproteinized bone maintained natural pore network. Its pore size was 472.51μm ± 7.02μm and the porosity was 78.15 % ± 6.45 %. The results of infrared spectrum showed that collagen was present in deproteinized bone. Both fresh and deproteinized bone had curve of hydroxyapatite. The Ca/P ratios were 1.71 ± 0. 95 and 1.68 ± 0. 76 ( P 〉 0. 05 ), and the protein contents were26.6% ± 2.23% and 19.1% ± 2.14% (P 〈 0.05) in fresh and deproteinized bone, respectively. There was no significant difference of destruction load under compression and maximal destruction load between fresh and deproteinized bone (P 〉 0. 05). The elastic modulus was higher in deproteinized bone than that in fresh bone (P 〈 0.05). Conclusions : Physicochemical properties and mechanic strength of deproteiulzed tissue-engineered bone meet the demands of ideal scaffold materials. But, its immunogenicity should be observed through further experiments for its clinical applications.展开更多
Objective :To investigate the feasibility of using natural poritos as scaffolds in bone tissue engineering (TE) and repair of caprine mandibular segmental defect with titanium reticulum reinforced. Methods: Natur...Objective :To investigate the feasibility of using natural poritos as scaffolds in bone tissue engineering (TE) and repair of caprine mandibular segmental defect with titanium reticulum reinforced. Methods: Natural poritos with a pore of 190-230 μm in size and porosity of about 50 %-65 % was molded into the shape of granules 5 mm × 5 mm × 5 mm in size. Expanded autologous caprine marrow mesenchymal stem cells were induced by recombinant human morphogenetic protein-2 (rhBMP2) to improve osteoblastic phenotype. Then marrow derived osteoblasts were seeded into poritos in density of 4 × 10^7/ml and incubated in vitro for 48 hours prior to implantation. Then osteoblastic cells/poritos complexes were implanted into mandibular defect and the defect was reinforced by titanium reticulum. Implantation of poritos alone acted as the control. Bone regeneration was assessed 4, 8, 16 weeks after implantation using roentgenographie analysis and histological observation was done after 16 weeks. Results: New bone could be observed histologically on the surface and in the pores of natural coral in all specimens in the cell-seeding group, whereas in the control group there was no evidence of osteogenesis process in the center of the construction. The results showed that new bone grafts were successfully restored 16 weeks after implantation. Conclusions: This study suggests the feasibility of using porous coral as scaffold material transplanted with marrow derived osteoblasts by TE method. By means of titanium reticulum reinforcement, mandibular defect could be successfully restored. It shows the potentiality of using this method for the reconstruction of bone defect in cfinic.展开更多
Bone tissue scaffolds based on bioactive polymer–hydroxyapatite composites have caused infections that seriously limit their extended application. In this study, we proposed a practical ion substitution method to syn...Bone tissue scaffolds based on bioactive polymer–hydroxyapatite composites have caused infections that seriously limit their extended application. In this study, we proposed a practical ion substitution method to synthesize in situ silver phosphate on the surface of a two-level, threedimensional chitosan/nano-hydroxyapatite scaffold. A release test of silver ions in a phosphate buffered saline(PBS) solution was performed to demonstrate that silver ions were released continuously from the silver phosphate during the initial 6 days of the study. The antibacterial property and cytocompatibility of the scaffolds treated with different concentrations of silver nitrate solution were assessed by in vitro assays with Escherichia coli and MC3T3-E1, respectively. The ability of the silver-containing scaffolds to induce bacteriostasis was confirmed by the inhibition zone(15 mm) and high bactericidal rate([99 %). Cell proliferation, morphology and the alkaline phosphatase activity of MC3T3-E1 cultured on the scaffold with low silver phosphate contents were comparable with those cultured on control samples.展开更多
Long-segment defects remain a major problem in clinical treatment of tubular tissue reconstruction.The design of tubular scaffold with desired structure and functional properties suitable for tubular tissue regenerati...Long-segment defects remain a major problem in clinical treatment of tubular tissue reconstruction.The design of tubular scaffold with desired structure and functional properties suitable for tubular tissue regeneration remains a great challenge in regenerative medicine.Here,we present a reliable method to rapidly fabricate tissueengineered tubular scaffold with hierarchical structure via 4-axis printing system.The fabrication process can be adapted to various biomaterials including hydrogels,thermoplastic materials and thermosetting materials.Using polycaprolactone(PCL)as an example,we successfully fabricated the scaffolds with tunable tubular architecture,controllable mesh structure,radial elasticity,good flexibility,and luminal patency.As a preliminary demonstration of the applications of this technology,we prepared a hybrid tubular scaffold via the combination of the 4-axis printed elastic poly(glycerol sebacate)(PGS)bio-spring and electrospun gelatin nanofibers.The scaffolds seeded with chondrocytes formed tubular mature cartilage-like tissue both via in vitro culture and subcutaneous implantation in the nude mouse,which showed great potential for tracheal cartilage reconstruction.展开更多
文摘Given the limited spontaneous repair that follows cartilage injury, demand is growing for tissue engi- neering approaches for cartilage regeneration. There are two major applications for tissue-engineered cartilage. One is in orthopedic surgery, in which the engineered cartilage is usually used to repair cartilage defects or loss in an articular joint or meniscus in order to restore the joint function. The other is for head and neck reconstruction, in which the engineered cartilage is usually applied to repair cartilage defects or loss in an auricle, trachea, nose, larynx, or eyelid. The challenges faced by the engineered car- tilage for one application are quite different from those faced by the engineered cartilage for the other application. As a result, the emphases of the engineering strategies to generate cartilage are usually quite different for each application. The statuses of preclinical animal investigations and of the clinical translation of engineered cartilage are also at different levels for each application. The aim of this review is to provide an opinion piece on the challenges, current developments, and future directions for cartilage engineering for both applications.
基金Project supported by the Investitionsbank Berlin (IBB), Germany (No. 10020666) and the Science and Technology Bureau of ZhejiangProvince, China (No. 991110052)
文摘The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation of PC in 3-dimensional (3D) poly-lactic-co-glycolic acid (PLGA) fleeces cultured in medium containing allogeneic human serum. PCs were isolated and expanded in monolayer culture. Expanded cells of passage 3 were seeded into PLGA constructs and cultured in osteogenic medium for a maximum period of 28 d. Morphological, histological and cell viability analyses of three-dimensionally cultured PCs were performed to elucidate osseous synthesis and deposition of a calcified matrix. Furthermore, the mRNA expression of type Ⅰ collagen, osteocalcin and osteonectin was semi-quantitively evaluated by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The fibrin gel immobilization technique provided homogeneous PCs distribution in 3D PLGA constructs. Live-dead staining indicated a high viability rate of PCs inside the PLGA scaffolds. Secreted nodules ofneo-bone tissue formation and the presence of matrix mineralization were confirmed by positive yon Kossa staining. The osteogenic differentiation of PCs was further demonstrated by the detection of type I collagen, osteocalcin and osteonectin gene expression. The results of this study support the concept that this tissue engineering method presents a promising method for creation of new bone in vivo.
文摘Stem cell homing, namely the recruitment of mesenchymal stem cells (MSCs) to injured tissues, is highly effective for bone regeneration in vivo. In order to explore whether the incorporation of mimetic peptide sequences on magnesium-doped (Mg-doped) hydroxyapatite (HA) may regulate the homing of MSCs, and thus induce cell migration to a specific site, we covalently functionalized MgHA disks with two chemotactic/haptotactic factors: either the fibronectin fragment III1-C human (FF III1-C), or the peptide sequence Gly-Arg-Gly-Asp-Ser-Pro-Lys, a fibronectin analog that is able to bind to integrin trans- membrane receptors. Preliminary biological evaluation of MSC viability, analyzed by 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, suggested that stem cells migrate to the MgHA disks in resoonse to the grafted haototaxis stimuli.
基金Projects(30370412, 30670558) supported by the National Natural Science Foundation of China
文摘To investigate the feasibility of implanting the biocomposite of calcium phosphate cement(CPC)/polylactic acid-polyglycolic acid(PLGA) into animals for bone defects repairing,the biocomposite of CPC/PLGA was prepared and its setting time,compressive strength,elastic modulus,pH values,phase composition of the samples,degradability and biocompatibility in vitro were tested.The above-mentioned composite implanted with bone marrow stromal cells was used to repair defects of the radius in rabbits.Osteogenesis was histomorphologically observed by using an electron-microscope.The results show that compared with the CPC,the physical and chemical properties of CPC/PLGA composite have some differences in which CPC/PLGA composite has better biological properties.The CPC/PLGA composite combined with seed cells is superior to the control in terms of the amount of new bones formed after CPC/PLGA composite is implanted into the rabbits,as well as the speed of repairing bone defects.The results suggest that the constructed CPC/PLGA composite basically meets the requirements of tissue engineering scaffold materials and that the CPC/PLGA composite implanted with bone marrow stromal cells may be a new artificial bone material for repairing bone defects because it can promote the growth of bone tissues.
文摘Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral head of patients were inoculated onto PDLLA/HA/DBM, PLA and DBM respectively. The proliferation rate and collagen Ⅰ expression were detected. The interface between biomaterial and osteoblasts was investigated with phase contrast microscopy and electron scanning microscopy. Results: Best proliferation rate was observed with the PDLLA/HA/DBM and followed by DBM and PLA, suggesting that PDLLA/HA/DBM satisfying most requirements for the cultivation of human osteoblasts. Scanning electron microscopy showed the morphology of osteoblasts was correlated with the proliferation data. The cells, well spread and flattened, were attached closely on the surface of biomaterial with an arched structure and had normal morphology. The extracellular collagenous matrixs covered the surface of biomaterial and packed the granules of biomaterial. Conclusion: PDLLA/HA/DBM can form osteointerface early and have a good biocompability.
基金Supported by the Research Foundation for Innovation project of FMMU(No. CX01A012)
文摘Objective: To observe the effects of different gravitational environments on release of prostaglandin E2 in rat calvarial osteoblasts induced by fluid shear stress (FSS) so that to investigate the influence of different gravity on mechanotransduction in osteoblasts. Methods: Osteoblasts were isolated from neonatal rat calvariae and then were set to three groups. Each was cultured in one gravitational environment; 1G terrestrial gravitational environment (control), simulated weightlessness achieved by using clinostat and 3G gravitational environment achieved by using centrifuge for 60 h, then osteoblasts were treated with 0. 5 Pa or 1. 5 Pa FSS in a flow chamber for 1 h. The release of PGE2 in osteoblasts was determined. Results: In 1G gravitational environment, the release of PGE2 was significantly increased along with the sustaining of FSS treatments (P<0. 01), but there was no remarkable difference between the responses to 0. 5 Pa FSS and 1. 5 Pa FSS (P>0. 05). While in simulated weightlessness environment group, no detectable release of PGE2 was found with the treatment of 0. 5 Pa FSS (P<0. 01), and the release of PGE2 was delayed and the amount of PGE2 production was remarkably decreased with 1. 5 Pa FSS treatment as compared with that of 1G group (P<0. 01). The responsiveness of osteoblasts cultured in 3G gravitational environment to FSS was similar to that of 1G group. Conclusion: These results indicate that in vitro the mechanotransduction in osteoblasts iss affected by stimulated weightlessness, whereas it is not altered in 3G gravitational environment.
基金National Natural Science Foundation of Chinagrant number:50772037 and 50732003+1 种基金Science and Technology Program ofGuangdong Province of Chinagrant number:2008A030102008
文摘In this study,the macroporous calcium phosphate cement with oriented pore structure was prepared by freeze casting.SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction.The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede's principle.XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement.To improve the mechanical properties of the CPC scaffold,the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds.After reinforced with gelatine,the compressive strength of CPC/gelatin composite increased to 5.12 MPa,around 50 times greater than that of the unreinforced macroporous CPC scaffold,which was only 0.1 MPa.And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain.SEM examination of the specimens indicated good bonding between the cement and gelatine.In conclusion,the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this study might be a potential scaffold for bone tissue engineering.
基金Supported by Shanghai Nature Science Foundation,China(99ZB14018)
文摘Objective To create a method for constructing a tissue-engineered graft with self-derived bone marrow cells and heterogeneous acellular matrix.Methods The mononuclear cells were isolated from bone marrows drawn from piglets and cultured in different mediums including either vascular endothelial growth factor(VEGF)or platelet derived growth factor BB(PDGF-BB)to observe their expansion and differentiation.The aortas harvested from canines were processed by a multi-step decellularizing technique to erase.The bone marrow mononuclear cells cultured in the mediums without any growth factors were seeded to the acellular matrix.The cells-seeded grafts were incubated in vitro for 6 d and then implanted to the cells-donated piglets to substitute parts of their native pulmonary arteries.Results After 4 d culturing,the cells incubated in the medium including VEGF showed morphological feature of endothelial cells(ECs)and were positive to ECs-specific monoclonal antibodies of CD31,FLK-1,VE-Cadherin and vWF.The cells incubated in the medium including PDGF-BB showed morphological feature of smooth muscle cells(SMCs)and were positive to SMCs-specific monoclonal antibodies of α-SMA and Calponin.One hundred days after implantation of seeded grafts,the inner surfaces of explants were smooth without thrombosis,calcification and aneurysm.Under the microscopy,plenty of growing cells could be seen and elastic and collagen fibers were abundant.Conclusion Mesenchymal stem cells might exist in mononuclear cells isolated from bone marrow.They would differentiate into endothelial cells or smooth muscle cells in proper in vitro or in vivo environments.The bone marrow mononuclear cells might be a choice of seeding cells in constructing tissue-engineered graft.
基金supported by the National Natural Science Foundation of China(Nos.81171472,81201407,and 81071270)the Innovation Team Project of Sichuan Provincial Education Department(No.13TD0030)+1 种基金the Major Transformation Cultivation Project of Sichuan Provincial Education Department(No.15CZ0021)the Science and Technology Project of Nanchong City(No.14A0021),China
文摘Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P〈0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage.
基金supported by the Science and Technology Commission of Shanghai Municipality(No.15JC1491003),China
文摘Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction.Autografts and allografts have been used in clinical application for some time,but they have disadvantages.With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques,the results of bone surgery may not be ideal.This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair.Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering,enhancing bone tissue regeneration in terms of mechanical strength,pore geometry,and bioactive factors,and overcoming some of the disadvantages of conventional technologies.This review focuses on the basic principles and characteristics of various fabrication technologies,such as stereolithography,selective laser sintering,and fused deposition modeling,and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering.In the near future,the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.
文摘Objective : To prepare and observe the physicochemical properties of scaffold materials of heterogeneous deproteinized tissue-engineered bone. Methods: Deproteinized bone was made through a series of physicochemical treatments in pig ribs and analyzed with histological observation, scanning electron microscopy, infrared spectrum, X-ray diffraction and energy dispersive analysis, Kjeidahl determination and mechanics analysis. Results: Interstitial collagen fiber was positive and mucin was negative in deproteinized bone, but, both were positive in fresh bone. Deproteinized bone maintained natural pore network. Its pore size was 472.51μm ± 7.02μm and the porosity was 78.15 % ± 6.45 %. The results of infrared spectrum showed that collagen was present in deproteinized bone. Both fresh and deproteinized bone had curve of hydroxyapatite. The Ca/P ratios were 1.71 ± 0. 95 and 1.68 ± 0. 76 ( P 〉 0. 05 ), and the protein contents were26.6% ± 2.23% and 19.1% ± 2.14% (P 〈 0.05) in fresh and deproteinized bone, respectively. There was no significant difference of destruction load under compression and maximal destruction load between fresh and deproteinized bone (P 〉 0. 05). The elastic modulus was higher in deproteinized bone than that in fresh bone (P 〈 0.05). Conclusions : Physicochemical properties and mechanic strength of deproteiulzed tissue-engineered bone meet the demands of ideal scaffold materials. But, its immunogenicity should be observed through further experiments for its clinical applications.
文摘Objective :To investigate the feasibility of using natural poritos as scaffolds in bone tissue engineering (TE) and repair of caprine mandibular segmental defect with titanium reticulum reinforced. Methods: Natural poritos with a pore of 190-230 μm in size and porosity of about 50 %-65 % was molded into the shape of granules 5 mm × 5 mm × 5 mm in size. Expanded autologous caprine marrow mesenchymal stem cells were induced by recombinant human morphogenetic protein-2 (rhBMP2) to improve osteoblastic phenotype. Then marrow derived osteoblasts were seeded into poritos in density of 4 × 10^7/ml and incubated in vitro for 48 hours prior to implantation. Then osteoblastic cells/poritos complexes were implanted into mandibular defect and the defect was reinforced by titanium reticulum. Implantation of poritos alone acted as the control. Bone regeneration was assessed 4, 8, 16 weeks after implantation using roentgenographie analysis and histological observation was done after 16 weeks. Results: New bone could be observed histologically on the surface and in the pores of natural coral in all specimens in the cell-seeding group, whereas in the control group there was no evidence of osteogenesis process in the center of the construction. The results showed that new bone grafts were successfully restored 16 weeks after implantation. Conclusions: This study suggests the feasibility of using porous coral as scaffold material transplanted with marrow derived osteoblasts by TE method. By means of titanium reticulum reinforcement, mandibular defect could be successfully restored. It shows the potentiality of using this method for the reconstruction of bone defect in cfinic.
基金supported by the National Natural Science Foundation of China(51372142,51321091)the Fundamental Research Funds of Shandong University(2014QY003-09)
文摘Bone tissue scaffolds based on bioactive polymer–hydroxyapatite composites have caused infections that seriously limit their extended application. In this study, we proposed a practical ion substitution method to synthesize in situ silver phosphate on the surface of a two-level, threedimensional chitosan/nano-hydroxyapatite scaffold. A release test of silver ions in a phosphate buffered saline(PBS) solution was performed to demonstrate that silver ions were released continuously from the silver phosphate during the initial 6 days of the study. The antibacterial property and cytocompatibility of the scaffolds treated with different concentrations of silver nitrate solution were assessed by in vitro assays with Escherichia coli and MC3T3-E1, respectively. The ability of the silver-containing scaffolds to induce bacteriostasis was confirmed by the inhibition zone(15 mm) and high bactericidal rate([99 %). Cell proliferation, morphology and the alkaline phosphatase activity of MC3T3-E1 cultured on the scaffold with low silver phosphate contents were comparable with those cultured on control samples.
基金supported by the National Key Research and Development Program of China (2018YFB1105602 and 2017YFC1103900)the National Natural Science Foundation of China (21574019, 81320108010, 81571823 and 81871502)+4 种基金the Natural Science Foundation of Shanghai (18ZR1401900)the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program (LZA2019001)the Science and Technology Commission of Shanghai (17DZ2260100 and 15DZ1941600)the Program for Shanghai Outstanding Medical Academic Leaderthe Program of Shanghai Technology Research Leader
文摘Long-segment defects remain a major problem in clinical treatment of tubular tissue reconstruction.The design of tubular scaffold with desired structure and functional properties suitable for tubular tissue regeneration remains a great challenge in regenerative medicine.Here,we present a reliable method to rapidly fabricate tissueengineered tubular scaffold with hierarchical structure via 4-axis printing system.The fabrication process can be adapted to various biomaterials including hydrogels,thermoplastic materials and thermosetting materials.Using polycaprolactone(PCL)as an example,we successfully fabricated the scaffolds with tunable tubular architecture,controllable mesh structure,radial elasticity,good flexibility,and luminal patency.As a preliminary demonstration of the applications of this technology,we prepared a hybrid tubular scaffold via the combination of the 4-axis printed elastic poly(glycerol sebacate)(PGS)bio-spring and electrospun gelatin nanofibers.The scaffolds seeded with chondrocytes formed tubular mature cartilage-like tissue both via in vitro culture and subcutaneous implantation in the nude mouse,which showed great potential for tracheal cartilage reconstruction.