The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrop...The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrophies, muscu- lar atrophy, and cachexia. Studies focused on the ability of extracellular factors to promote myogenesis are therefore highly promising. We now report that an adipocyte-derived factor, globular adiponectin (gAd), is able to induce mus- cle gene expression and cell differentiation, gAd, besides its well-known ability to regulate several metabolic func- tions in muscle, including glucose uptake and consumption and fatty acid catabolism, is able to block cell cycle entry of myoblasts, to induce the expression of specific skeletal muscle markers such as myosin heavy chain or caveolin-3, as well as to provoke cell fusion into multinucleated syncytia and, finally, muscle fibre formation, gAd exerts its pro- differentiative activity through redox-dependent activation of p38, Akt and 5'-AMP-activated protein kinase path- ways. Interestingly, differentiating myoblasts are autocrine for adiponectin, and the mimicking of pro-inflammatory settings or exposure to oxidative stress strongly increases the production of the hormone from differentiating cells. These data suggest a novel function of adiponectin, directly coordinating the myogenic differentiation program and serving an autocrine function during skeletal myogenesis.展开更多
Objective: To study the mechanism of Tuina in the treatment of skeletal muscle injury. Methods: Rabbits were heavily beaten at gastrocnemius muscle to make acute contusion model and then treated respectively by earl...Objective: To study the mechanism of Tuina in the treatment of skeletal muscle injury. Methods: Rabbits were heavily beaten at gastrocnemius muscle to make acute contusion model and then treated respectively by early Tuina and routine Tuina. The number of satellite cells of skeletal muscles was observed. Results: The number of the satellite cells continued to grow in both groups, and it began to increase significantly 3-5 days after Tuina treatment. Early Tuina treatment produces larger number of satellite cells than routine Tuina treatment. Conclusion: Early Tuina treatment is helpful to the marked recovery of skeletal muscles by increasing the number of satellite cell.展开更多
文摘The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrophies, muscu- lar atrophy, and cachexia. Studies focused on the ability of extracellular factors to promote myogenesis are therefore highly promising. We now report that an adipocyte-derived factor, globular adiponectin (gAd), is able to induce mus- cle gene expression and cell differentiation, gAd, besides its well-known ability to regulate several metabolic func- tions in muscle, including glucose uptake and consumption and fatty acid catabolism, is able to block cell cycle entry of myoblasts, to induce the expression of specific skeletal muscle markers such as myosin heavy chain or caveolin-3, as well as to provoke cell fusion into multinucleated syncytia and, finally, muscle fibre formation, gAd exerts its pro- differentiative activity through redox-dependent activation of p38, Akt and 5'-AMP-activated protein kinase path- ways. Interestingly, differentiating myoblasts are autocrine for adiponectin, and the mimicking of pro-inflammatory settings or exposure to oxidative stress strongly increases the production of the hormone from differentiating cells. These data suggest a novel function of adiponectin, directly coordinating the myogenic differentiation program and serving an autocrine function during skeletal myogenesis.
文摘Objective: To study the mechanism of Tuina in the treatment of skeletal muscle injury. Methods: Rabbits were heavily beaten at gastrocnemius muscle to make acute contusion model and then treated respectively by early Tuina and routine Tuina. The number of satellite cells of skeletal muscles was observed. Results: The number of the satellite cells continued to grow in both groups, and it began to increase significantly 3-5 days after Tuina treatment. Early Tuina treatment produces larger number of satellite cells than routine Tuina treatment. Conclusion: Early Tuina treatment is helpful to the marked recovery of skeletal muscles by increasing the number of satellite cell.