The paper introduces a new approach to estimating the T-year return-period wave height (TRPW), i.e. the wave height expected to occur in T-year, from two sets of observed extreme data and on the basis of the maximum e...The paper introduces a new approach to estimating the T-year return-period wave height (TRPW), i.e. the wave height expected to occur in T-year, from two sets of observed extreme data and on the basis of the maximum entropy principle. The main points of the approach are as follows. 1) A maximum entropy probability density function (PDF) for the extreme wave height H is derived from a Euler equation subject to some necessary and rational constraints. 2) The parameters in the function are expressed in terms of the mth moment of H. 3) This PDF is convenient to theoretical and practical applications as it is simple and its four parameters are easy to be determined from observed extreme data. An example is given for estimating the TRPW in 50 and 100 years by the present approach and by some currently used methods using observed data at two hydrographic stations.The comparison of the estimated results shows that the present approach is quite similar to the Pearson-Ⅲ and Gumbel methods.展开更多
Both wave-frequency(WF) and low-frequency(LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system.This paper conducts a comprehensive investigation of applicable pro...Both wave-frequency(WF) and low-frequency(LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system.This paper conducts a comprehensive investigation of applicable probability density functions(PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method.Short-term statistical characteristics of mooring-line tension responses are firstly investigated,in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients.Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes.Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components.A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses.Using time domain simulation as a benchmark,its accuracy is further validated using a numerical case study of a moored semi-submersible platform.展开更多
基金the Natural Science Foundation of China under Contract No.40706012the Young Scientist Foundation of State Oceanic Administration under Contract No.2008209+1 种基金the Basic Science Operational Fund of the Ministry of Finance assigned to the Third Institute of Oceanography,State Oceanic Administration under Contract No.2007010‘863’program No.2006AA09A301
文摘The paper introduces a new approach to estimating the T-year return-period wave height (TRPW), i.e. the wave height expected to occur in T-year, from two sets of observed extreme data and on the basis of the maximum entropy principle. The main points of the approach are as follows. 1) A maximum entropy probability density function (PDF) for the extreme wave height H is derived from a Euler equation subject to some necessary and rational constraints. 2) The parameters in the function are expressed in terms of the mth moment of H. 3) This PDF is convenient to theoretical and practical applications as it is simple and its four parameters are easy to be determined from observed extreme data. An example is given for estimating the TRPW in 50 and 100 years by the present approach and by some currently used methods using observed data at two hydrographic stations.The comparison of the estimated results shows that the present approach is quite similar to the Pearson-Ⅲ and Gumbel methods.
基金the financial support of the Major Program of the National Natural Science Foundation of China(No.51490675)the National Science Fund for Distinguished Young Scholars(No.51625902)+1 种基金the Taishan Scholars Program of Shandong Provincethe Fundamental Research Funds for the Central Universities(No.841713035)
文摘Both wave-frequency(WF) and low-frequency(LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system.This paper conducts a comprehensive investigation of applicable probability density functions(PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method.Short-term statistical characteristics of mooring-line tension responses are firstly investigated,in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients.Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes.Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components.A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses.Using time domain simulation as a benchmark,its accuracy is further validated using a numerical case study of a moored semi-submersible platform.