期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
三峡大坝运行后长江中下游流域气温与植被变化特征及原因分析 被引量:4
1
作者 葛非凡 毛克彪 +5 位作者 蒋跃林 姜立鹏 范玉芬 王一舒 谭雪兰 李建军 《气候变化研究进展》 CSCD 北大核心 2017年第6期578-588,共11页
基于长江中下游流域120个气象站点1971—2015年日值气温数据,2006—2015年ERA-Interim土壤湿度再分析资料和2006—2015年MODIS卫星遥感植被指数产品MOD13A3,研究了在考虑全球变暖背景下,长江中下游流域春、夏、秋、冬4个季节平均气温在... 基于长江中下游流域120个气象站点1971—2015年日值气温数据,2006—2015年ERA-Interim土壤湿度再分析资料和2006—2015年MODIS卫星遥感植被指数产品MOD13A3,研究了在考虑全球变暖背景下,长江中下游流域春、夏、秋、冬4个季节平均气温在三峡大坝运行前后的变化,采用百分比阈值方法量化最高和最低气温并进行MK突变检验,并分析三峡大坝运行后的长江中下游流域四季土壤湿度和增强型植被指数(EVI)的变化。结果表明:长江中下游流域四季平均气温在三峡大坝运行以后出现明显变化,江南地区主要出现增温现象,江北地区主要出现降温现象;MK突变检验结果显示,江南地区的高温日和江北的低温日均在2006年左右发生突变,与三峡大坝完全运行的时间相符;长江中下游流域土壤湿度在三峡大坝运行后出现南湿北干的变化趋势;EVI在江南地区诸多区域出现显著增加趋势,其中冬季最突出(33.06%),而江北地区诸多区域则出现显著减小趋势,其中夏季最明显(5.11%),EVI与平均气温的空间变化在春、夏、冬3个季节显著相关。 展开更多
关键词 高低温日 EVI 气温变化 土壤湿度 水热条件
下载PDF
Interpretation of 850 hPa Temperature in Temperature Forecast of Jiamusi Area 被引量:1
2
作者 尹嫦姣 孙洪伟 《Agricultural Science & Technology》 CAS 2017年第4期660-664,共5页
Based on the initial field temperature data of ECMWF 850 hPa from Jan- uary 2012 to December 2015, linear interpolation method of ECMWF was employed to calculate the 850 hPa temperature values at 8:00 and 20:00 of 7... Based on the initial field temperature data of ECMWF 850 hPa from Jan- uary 2012 to December 2015, linear interpolation method of ECMWF was employed to calculate the 850 hPa temperature values at 8:00 and 20:00 of 7 stations (Jiamusi, Tangyuan, Huachuan, Huanan, Fujin, Tongjiang, Fuyuan). Combined with the observed daily minimum and maximum air temperatures at the same time of the 7 stations, the correlations of the 850 hPa temperature values at 8:00 and 20:00 with the daily maximum or minimum air temperature of the ground meteorological obser- vation stations were established, and the ground observation data in accordance with the relevant analysis and correlation test principle of the prediction equation for factor were primarily selected. Regression method was used to establish forecast e- quation dividing into counties, month by month. The results showed that the 850 hPa temperature values at 8:00 and 20:00 were significantly correlated with the daily maximum or minimum air temperature, and the established temperature fore- cast equation was of certain guiding significance for the forecast of daily minimum and maximum temperature, which could help to improve the forecast accuracy. 展开更多
关键词 850 hPa temperature Daily air temperature Regression equation Cor- relation
下载PDF
Observed trends in diurnal temperature range over Nigeria 被引量:1
3
作者 DIKE Victor Nnamdi LIN Zhaohui +1 位作者 WANG Yuxi NNAMCHI Hyacinth 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期131-139,共9页
The long-term trend of diurnal temperature range(DTR)over Nigeria was examined using daily station-based datasets for the period 1971–2013.The results show that the regionally averaged DTR has decreased significantly... The long-term trend of diurnal temperature range(DTR)over Nigeria was examined using daily station-based datasets for the period 1971–2013.The results show that the regionally averaged DTR has decreased significantly(-0.34°C per decade)over the Nigerian Sahel(north of 10°N),but there has been a slight increasing trend(0.01°C per decade)over the Nigerian Guinea Coast.The annual decreasing trend of DTR in the Nigerian Sahel is mainly attributable to the significant increasing trend in daily minimum temperature(Tmin,0.51°C per decade),which far outstrips the rate of increase in the daily maximum(Tmax,0.17°C per decade).In contrast,the comparable trends in Tmin(0.19°C per decade)and Tmax(0.20°C per decade)may explain the non-significant trend of the DTR averaged over the Guinea Coast region.It is observed that the DTR has decreased more in boreal summer(June–July–August)than in boreal winter(December–January–February)for the regions.Furthermore,it is found that the significant DTR declining trend over the Nigerian Sahel is closely associated with an increasing trend of annual and summer precipitation in the region,but the increasing DTR trend in the Nigerian Guinea Coast region can be attributed to the decreasing trend of cloud cover over the region. 展开更多
关键词 Diurnal temperature range maximum/minimum temperature TREND NIGERIA
下载PDF
Change in Extreme Climate Events over China Based on CMIP5 被引量:7
4
作者 XU Ying WU Jie +3 位作者 SHI Ying ZHOU Bo-Tao LI Rou-Ke WU Jia 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第4期185-192,共8页
The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percen... The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario. 展开更多
关键词 CMIP5 extreme climate index climate projection UNCERTAINTY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部