Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation...Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.展开更多
Measurement of two phase flow in porous medium for sequestration was carried out using high-resolution magnetic resonance imaging (MRI) technique. The porous medium was a packed bed of glass beads. Spin echo multi seq...Measurement of two phase flow in porous medium for sequestration was carried out using high-resolution magnetic resonance imaging (MRI) technique. The porous medium was a packed bed of glass beads. Spin echo multi sequence was used to measure the distribution of CO2 and water in the porous medium. The intensity images show that the fluid distribution is non-uniform due to its viscosity and pore structure of porous medium. The velocity distribution of fluids is calculated from the saturation of water and porosity of porous medium. The experimental results show that fluid velocities vary with time and position. The capillary dispersion rate donated the effects of capillary, which was largest at water saturations of 0.45. The displacement process is different between in BZ-02 and BZ-2. The final water residual saturation depends on permeability and porosity.展开更多
The Deep-towed Acoustics and Geophysics System (DTAGS) is a high frequency (220-820 Hz) multichannel seismic system towed about 300 m above seafloor.Compared to the conventional surface-towed seismic system,the DTAGS ...The Deep-towed Acoustics and Geophysics System (DTAGS) is a high frequency (220-820 Hz) multichannel seismic system towed about 300 m above seafloor.Compared to the conventional surface-towed seismic system,the DTAGS system is characterized by its shorter wavelength (<6 m),smaller Fresnel zone,and greater sampling in wavenumber space,so it has unique advantages in distinguishing fine sedimentary layers and geological structures.Given the near-bottom configuration and wide high-frequency bandwidth,the precise source and hydrophone positioning is the basement of subsequent seismic imaging and velocity analysis,and thus the quality of array geometry inversion is the key of DTAGS data processing.In the application of exploration for marine gas hydrate on mid-slope of northern Cascadia margin,the DTAGS system has shown high vertical and lateral resolution images of the sedimentary and structural features of the Cucumber Ridge (a carbonate mound) and Bullseye Vent (a cold vent),and provided abundant information for the evaluation of gas hydrate concentration and the mechanism of fluid flow that controls the formation and distribution of gas hydrate.展开更多
基金Funded by the Key Tenth five Project of State Bureau of Surveying and Mapping (No. 1469990324236 04 06) and the Faculty Research Grant of Uni versity of New South Wales (No. PS03283).
文摘Synthetic aperture radar interferometry (InSAR) has been used as an innovative technique for digital elevation model (DEM) and topographic map generation. In this paper, external DEMs are used for InSAR DEM generation to reduce the errors in data processing. The DEMs generated from repeat-pass InSAR are compared. For steep slopes and severe changes in topography, phase unwrapping quality can be improved by subtracting the phase calculated from an external DEM. It is affirmative that the absolute height accuracy of the InSAR DEM is improved by using external DEM. The data processing was undertaken without the use of ground control points and other manual operation.
基金Supported by the Major State Basic Research Development Program of China(2011CB707304)the National Natural Science Foundation of China(51006016,51006017,51106018,51106019)
文摘Measurement of two phase flow in porous medium for sequestration was carried out using high-resolution magnetic resonance imaging (MRI) technique. The porous medium was a packed bed of glass beads. Spin echo multi sequence was used to measure the distribution of CO2 and water in the porous medium. The intensity images show that the fluid distribution is non-uniform due to its viscosity and pore structure of porous medium. The velocity distribution of fluids is calculated from the saturation of water and porosity of porous medium. The experimental results show that fluid velocities vary with time and position. The capillary dispersion rate donated the effects of capillary, which was largest at water saturations of 0.45. The displacement process is different between in BZ-02 and BZ-2. The final water residual saturation depends on permeability and porosity.
基金supported by National Natural Science Foundation of China (Grant Nos. 40830423 and 40904029)Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘The Deep-towed Acoustics and Geophysics System (DTAGS) is a high frequency (220-820 Hz) multichannel seismic system towed about 300 m above seafloor.Compared to the conventional surface-towed seismic system,the DTAGS system is characterized by its shorter wavelength (<6 m),smaller Fresnel zone,and greater sampling in wavenumber space,so it has unique advantages in distinguishing fine sedimentary layers and geological structures.Given the near-bottom configuration and wide high-frequency bandwidth,the precise source and hydrophone positioning is the basement of subsequent seismic imaging and velocity analysis,and thus the quality of array geometry inversion is the key of DTAGS data processing.In the application of exploration for marine gas hydrate on mid-slope of northern Cascadia margin,the DTAGS system has shown high vertical and lateral resolution images of the sedimentary and structural features of the Cucumber Ridge (a carbonate mound) and Bullseye Vent (a cold vent),and provided abundant information for the evaluation of gas hydrate concentration and the mechanism of fluid flow that controls the formation and distribution of gas hydrate.