期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大光学深度波长调制吸收光谱的研究 被引量:1
1
作者 王允韬 蔡海文 +1 位作者 耿建新 方祖捷 《中国激光》 EI CAS CSCD 北大核心 2009年第2期403-409,共7页
由于在高光学深度下,比尔朗伯特(Beer-Lambert)定律的线性近似不再成立,波长调制光谱(WMS)中常用的偶次谐波探测失效。比较研究了适用于高光学深度的对数光谱方法和比值方法,理论研究了这两种方法的测量分辨率以及信号幅度随光学深度变... 由于在高光学深度下,比尔朗伯特(Beer-Lambert)定律的线性近似不再成立,波长调制光谱(WMS)中常用的偶次谐波探测失效。比较研究了适用于高光学深度的对数光谱方法和比值方法,理论研究了这两种方法的测量分辨率以及信号幅度随光学深度变化的规律,研制了一套波长调制光谱光纤甲烷传感器。得到了对数方法中光源功率调制的傅里叶系数表达式;研究了制约对数光谱方法和比值方法分辨率的因素。研究表明,对数光谱方法的测量分辨率高于比值方法2~3个数量级。 展开更多
关键词 光谱学 波长调制光谱 高光学深度 对数光谱 光纤甲烷传感
原文传递
Classification of hyperspectral images based on a convolutional neural network and spectral sensitivity 被引量:3
2
作者 Cheng-ming YE Xin LIU +3 位作者 Hong XU Shi-cong REN Yao LI Jonathan LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第3期240-248,共9页
In recent years,deep learning methods have gradually come to be used in hyperspectral imaging domains.Because of the peculiarity of hyperspectral imaging,a mass of information is contained in the spectral dimensions o... In recent years,deep learning methods have gradually come to be used in hyperspectral imaging domains.Because of the peculiarity of hyperspectral imaging,a mass of information is contained in the spectral dimensions of hyperspectral images.Also,different ob jects on a land surface are sensitive to different ranges of wavelength.To achieve higher accuracy in classification,we propose a structure that combines spectral sensitivity with a convolutional neural network by adding spectral weights derived from predicted outcomes before the final classification layer.First,samples are divided into visible light and infrared,with a portion of the samples fed into networks during training.Then,two key parameters,unrecognized rate(δ)and wrongly recognized rate(γ),are calculated from the predicted outcome of the whole scene.Next,the spectral weight,derived from these two parameters,is calculated.Finally,the spectral weight is added and an improved structure is constructed.The improved structure not only combines the features in spatial and spectral dimensions,but also gives spectral sensitivity a primary status.Compared with inputs from the whole spectrum,the improved structure attains a nearly 2%higher prediction accuracy.When applied to public data sets,compared with the whole spectrum,on the average we achieve approximately 1%higher accuracy. 展开更多
关键词 Hyperspectral imaging Deep learning Convolutional neural network(CNN) Spectral sensitivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部