由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型...由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型(Perturbed Linear Mixing Model,PLMM)在解混的过程中可以减轻端元变异性造成的不利影响,但是对缩放效应造成的变异性的处理能力较弱。为此,本文改进了扰动线性混合模型,引入了尺度因子以处理缩放效应造成的变异性,并结合超像素分割算法划分局部同质区,然后设计出基于局部同质区共享端元变异性的解混算法(Shared Endmember Variability in Unmixing,SEVU)。与扰动线性混合模型,扩展线性混合模型(Extended Linear Mixing Model,ELMM)等算法相比,所提SEVU算法在合成数据集上平均端元光谱角距离(mean Spectral Angle Distance,mSAD)和丰度均方根误差(abundance Root Mean Square Error,aRMSE)最优,分别为0.0855和0.0562;在Jasper Ridge和Cuprite真实数据集上mSAD是最优的,分别为0.0603和0.1003。在合成数据集和两个实测数据集上的实验结果验证了SEVU算法的有效性。展开更多
文摘由于不同的照明条件、复杂的大气环境等因素,相同端元的光谱特征在图像的不同位置呈现出可见的差异,这种现象被称为端元的光谱变异性。在相当大的场景中,端元的变异性可能很大,但在适度的局部同质区内,变异性往往很小。扰动线性混合模型(Perturbed Linear Mixing Model,PLMM)在解混的过程中可以减轻端元变异性造成的不利影响,但是对缩放效应造成的变异性的处理能力较弱。为此,本文改进了扰动线性混合模型,引入了尺度因子以处理缩放效应造成的变异性,并结合超像素分割算法划分局部同质区,然后设计出基于局部同质区共享端元变异性的解混算法(Shared Endmember Variability in Unmixing,SEVU)。与扰动线性混合模型,扩展线性混合模型(Extended Linear Mixing Model,ELMM)等算法相比,所提SEVU算法在合成数据集上平均端元光谱角距离(mean Spectral Angle Distance,mSAD)和丰度均方根误差(abundance Root Mean Square Error,aRMSE)最优,分别为0.0855和0.0562;在Jasper Ridge和Cuprite真实数据集上mSAD是最优的,分别为0.0603和0.1003。在合成数据集和两个实测数据集上的实验结果验证了SEVU算法的有效性。
文摘高光谱图像(Hyperspectral Image,HSI)在采集的过程中会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。在本文中,提出了一种基于非凸低秩张量分解和群稀疏总变分正则化的高光谱混合噪声图像恢复模型;一方面,采用对数张量核范数来逼近HSI的低秩特性,可以利用高光谱数据固有的张量结构,同时减少对较大奇异值的收缩以保留图像更多细节特征;另一方面,采用群稀疏总变分正则化来增强HSI的空间稀疏性和相邻光谱间的相关性。并采用ADMM(Alternating Direction Multiplier Method)算法求解,实验证明该算法易于收敛。在模拟和真实的高光谱图像实验中,与其他方法相比,该方法在去除HSI混合噪声方面具有更好的性能。